
Introduction to Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

WS 2007/2008

RT (ICS @ UIBK) week 13 1/22

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws07/imc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Outline

Last Lecture

“Model Checking” Lecture

Repetition
NanoPromela to Transition Systems
LTL to NBA

RT (ICS @ UIBK) week 13 2/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Last Lecture

CTL∗-Model Checking Algorithm [Emerson, Lei]

1. Eliminate existential path quantifiers

Eϕ ≡ ¬A¬ϕ

2. Use bottom-up CTL-model checking procedure
• Sat(true) = S

• Sat(a) = {s | a ∈ L(s)}
• Sat(¬Φ) = S \ Sat(Φ)

• Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

3. Integrate LTL-model checker for universal path formulas

RT (ICS @ UIBK) week 13 4/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Last Lecture

Use LTL-Model Checker for Universal Formulas

Idea: to compute s ∈ Sat(Aϕ) perform LTL model checking of ϕ

• Replace every maximal state-formula Ψ in ϕ which is not an atomic
proposition by a new atomic proposition aΨ, result: LTL-formula ϕ′

• Extend labeling of states: Whenever s ∈ Sat(Ψ) then add aΨ to the
set of labels of s.

• Apply LTL-model checker to determine Sat(Aϕ):

s ∈ Sat(Aϕ) iff s |= ϕ′

RT (ICS @ UIBK) week 13 5/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Last Lecture

Exercise 1

Prove that there is no LTL-formula which is equivalent to
Φ = A F (b ∧ A X b)

RT (ICS @ UIBK) week 13 6/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Last Lecture

Exercise 2

Consider the formula Φ = A G ((¬E F serve) ∨ (E G F main))

• Try to formulate the meaning in words

• Apply the CTL∗-model checking algorithm on the following example

1

main

2serve

3

serve

4

5 6

main

7 serve

RT (ICS @ UIBK) week 13 7/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


“Model Checking” Lecture

Selection of Topics

• Model checking on the fly

• µ-calculus

• S1S

• Model checking of real-time systems

• Controlling the state-space explosion problem

• . . .

RT (ICS @ UIBK) week 13 9/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


“Model Checking” Lecture

Model Checking on the Fly

Consider ϕ = G¬(crit1 ∧ crit2)

Transition system:

start

crit1

crit1, crit2

crit2 . . . 5,000,000 other states

Full construction of TS⊗A¬ϕ to check emptyness is too expensive
⇒ only construct part of TS which suffices to check TS |= ϕ

Model Checking on the Fly

RT (ICS @ UIBK) week 13 10/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


“Model Checking” Lecture

µ-Calculus

In CTL: semantics based on least and greatest fixpoint

In µ-calculus:

• explicit least- and greatest fixpoint operators

• easy to implement

• many logics can be translated into µ-calculus

• parallel model checking algorithms available

⇒ µ-calculus as efficient basis for model-checking for several logics

RT (ICS @ UIBK) week 13 11/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


“Model Checking” Lecture

S1S

Consider the following property:

Between every green and red phase there is at least one orange phase.

Formulating these kinds of properties in LTL is doable, but not intuitive

G (red⇒ X (G¬green) ∨ (¬green ∧ (X¬green U orange))))

Use S1S instead:

∀t1, t2 : (t1 < t2 ∧ green(t1) ∧ red(t2))⇒ ∃t3 : t1 < t3 < t2 ∧ orange(t3)

• Allows readable and succinct specifications

• One can perform model checking by NBAs

RT (ICS @ UIBK) week 13 12/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


“Model Checking” Lecture

Model Checking of Real-Time Systems
• Timed Systems

phase 1

{red}

phase 2 {red , orange}

x 6 20, y := 0

phase 3

{green}

y > 2

phase 4{orange}

x 6 y + 30, y := 0

y > 3, x := 0

• Timed Specifications
One does not have to wait more than 50 seconds for green:

Φ = G F 650green

RT (ICS @ UIBK) week 13 13/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


“Model Checking” Lecture

Controlling the State-Space Explosion Problem

Reduce search space in various ways

• Abstraction:
instead of 16-bit integer, only distinguish between even and odd, or
between positive, 0, negative, or between . . .

• Partial order reduction:
if process 1 and process 2 perform operations on local variables,
then schedule process 1 always before process 2

⇒ less interleaving, smaller transition system

• . . .

RT (ICS @ UIBK) week 13 14/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Repetition NanoPromela to Transition Systems

NanoPromela to Channel System: Locations = Sub-Expr.

x := expr
true : assign(x , expr)−−−−−−−−−−−−−−→ exit

stmt1
g :α−−−→ stmt′1 6= exit

stmt1; stmt2
g :α−−−→ stmt′1; stmt2

stmt1
g :α−−−→ exit

stmt1; stmt2
g :α−−−→ stmt2

stmti
h:α−−−→ stmt′i

if . . . :: gi ⇒ stmti . . .fi
gi∧h:α−−−−−→ stmt′i

stmti
h:α−−−→ stmt′i 6= exit

do . . . :: gi ⇒ stmti . . . od gi∧h:α−−−−−→ stmt′i ; do . . . od

stmti
h:α−−−→ exit

do . . . :: gi ⇒ stmti . . . od gi∧h:α−−−−−→ do . . . od

RT (ICS @ UIBK) week 13 16/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Repetition NanoPromela to Transition Systems

Example: Mutual Exclusion of 2 Processes

p1 = do :: true => b = 2; if :: b = 1 => cr1 = 1; cr1 = 0 fi od

p2 = do :: true => b = 1; if :: b = 2 => cr2 = 1; cr2 = 0 fi od

RT (ICS @ UIBK) week 13 17/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Repetition NanoPromela to Transition Systems

Example: Mutual Exclusion of 2 Processes

p1 = do :: true => b = 2; if :: b = 1 => cr1 = 1; cr1 = 0 fi od

p2 = do :: true => b = 1; if :: b = 2 => cr2 = 1; cr2 = 0 fi od

For p1 obtain:

p1

if :: b = 1 => cr1 = 1; cr1 = 0 fi; p1

ass(b,2)

cr1 = 0; p1

b = 1 : ass(cr1,1)

ass(cr1,0)

RT (ICS @ UIBK) week 13 18/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Repetition NanoPromela to Transition Systems

Example: Resulting Channel System

Renaming states of p1 to s1,s2,s3 and those of p2 to t1,t2,t3 yields the
following channel system

s1

s2

ass(b,2)

s3

b=1 : ass(cr1,1)

ass(cr1,0)

t1

t2

ass(b,1)

t3

b=2 : ass(cr2,1)

ass(cr2,0)

RT (ICS @ UIBK) week 13 19/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Repetition NanoPromela to Transition Systems

Example: Resulting Transition System

s1, t1, (b: 1, cr1: 0, cr2: 0)

s2, t1, (b: 2, cr1: 0, cr2: 0)

s2, t2, (b: 1, cr1: 0, cr2: 0)

s3, t2, (b: 1, cr1: 1, cr2: 0)

s1, t1, (b: 2, cr1: 0, cr2: 0)

s1, t2, (b: 1, cr1: 0, cr2: 0)

s2, t2, (b: 2, cr1: 0, cr2: 0)

s2, t3, (b: 2, cr1: 0, cr2: 1)

RT (ICS @ UIBK) week 13 20/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Repetition LTL to NBA

LTL to NBAs: ϕ-Expansion and Consistency Checks

ϕj = ¬ϕj1 ⇒ w [i ..]j = 1 iff w [i ..]j1 = 0

ϕj = ϕj1 ∧ ϕj2 ⇒ w [i ..]j = 1 iff w [i ..]j1 = 1 and w [i ..]j2 = 1

ϕj = Xϕj1 ⇒ w [i ..]j = 1 iff w [i + 1..]j1 = 1

ϕj = ϕj1 Uϕj2 ⇒ w [i ..]j = 1 iff w [i ..]j2 = 1 or

(w [i ..]j1 = 1 and w [i + 1]j = 1)

States of NBA: Vectors where components represent sub-formulas
Transitions s1

in−−→ s2 where

• s1: preceding values of ϕ-expansion or start state q0

• in: current input

• s2: current values of ϕ-expansion

Transitions satisfy consistency checks and q0 leads to states with
ϕ-component 1

RT (ICS @ UIBK) week 13 21/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Repetition LTL to NBA

Example ϕ = X (a U b)

RT (ICS @ UIBK) week 13 22/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Last Lecture
	``Model Checking'' Lecture
	Repetition
	NanoPromela to Transition Systems
	LTL to NBA


