Today

Introduction to Model Checking

Formalizing

René Thiemann

property
specification

Institute of Computer Science

University of Innsbruck Model Checking

WS 2007,/2008

RT (ICS @ UIBK) week 2 1/22 RT (ICS @ UIBK) week 2
Tansiion systems
Transition systems Transition system

A transition system TS is a tuple (S, Act,—, I, AP, L) where

e S is a set of states

model to describe the behaviour of systems e Actis a set of actions

e digraphs where nodes represent states, and edges model transitions e — C SxActxSis a transition relation

e state: . _
- e | C S is a set of initial states
e the current phase of a traffic light

e the current values of all program variables + the program counter e APis a set of atomic propositions
e transition: (“state change”)

e a switch from one phase to the next one
e the execution of a program statement

L:S—2APis 3 labeling function

S and Act are either finite or countably infinite

Notation: s - s’ instead of (s, ,s') € —

RT (ICS @ UIBK) week 2 4/22 RT (ICS @ UIBK) week 2

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws07/imc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A beverage vending machine

RT (ICS @ UIBK)

get_sprite get_beer

states? actions?, transitions?, initial states?

week 2

The role of nondeterminism

Here: nondeterminism is a feature!

e to model concurrency by interleaving

e no assumption about the relative speed of processes

e to model implementation freedom

e only describes what a system should do, not how

e to model under-specified systems, or abstractions of real systems

e use incomplete information

in automata theory, nondeterminism may be exponentially more succinct

RT (ICS @ UIBK)

but that’s not the issue here!

week 2

6/22

8/22

Atomic propositions?

RT (ICS @ UIBK) week 2 7/22

Executions

e An execution ¢ of TS is an alternating sequence of states and actions

0 = SHQ01S1Q2 ...0pSy ...
such that
o 5, g s forall0<ieN
e o€l

(W.l.0.g. consider only infinite executions)

e A trace of an execution is an infinite sequence of atomic propositions,
i.e., trace(p) € (2AP)~

trace(o) = L(so) L(s1) L(s2) L(s3) ...

e Traces(TS) is the set of all traces of all executions of TS
It defines the observable behaviour of TS.

RT (ICS @ UIBK) week 2 9/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Beverage vending machine revisited

“Abstract” transitions:

true:coin

start —4EC9N, sefect and start el orar
select —1Prite=0:sget | oyopy and select —1beer=0:bget | oyapp
select nsprite=0 N\ nbeer=0:ret_coin start
| Action | Effect on variables

coin

ret_coin

sget nsprite := nsprite — 1

bget nbeer := nbeer — 1

refill nsprite .= max; nbeer := max
RT (ICS @ UIBK) week 2 10/22 RT (ICS @ UIBK) week 2 12/22
Program graph representation Some preliminaries

e typed variables with a valuation that assigns values to variables
e e.g., n(x) =17 and n(y) = green

e the set of Boolean conditions over Var
e propositional logic formulas whose propositions are of the form “x € D"
o (nsprite > 1) A (y = blue) N (x <2:x')

e effect of the actions is formalized by means of a mapping:

Effect : Act x Eval(Var) — Eval(Var)

e e.g., for action o use update x ==y ==blue ?72-x:x—1, and
evaluation 7 is given by n(x) = 17 and n(y) = red
o Effect(a,n)(x) = n(x) —1=16, and Effect(c,n)(y) = n(y) = red

RT (ICS @ UIBK) week 2 13/22 RT (ICS @ UIBK) week 2 14/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program graphs Beverage vending machine

A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect, —, Locy, g&o) ~ where o Loc = { start, select } with Locy = { start }
o Act = { bget, sget, coin, ret_coin, refill }
e Var= { nsprite, nbeer } with domain {0,1,..., max}
e Locis a set of locations with initial locations Locy C Loc .
Effect(coin, n) = 7
e Actis a set of actions Effect(ret_coin,n) = 7
o Effect : Act x Eval(Var) — Eval(Var) is the effect function e Effect(sget,n) = n[nsprite := nsprite—1]
e — C Locx(Cond(Var) xAct) x Loc, transition relation Effect(bget,) = nlnbeer := nbeer—1]
— Effect(refill, n) = [nsprite := max, nbeer := max]

Boolean conditions overVar

e go & Cond(Var) is the initial condition. * & = (nsprite = max A nbeer = max)

Notation: ¢ £ ¢ denotes (¢, g,a,l') € —

RT (ICS @ UIBK) week 2 15/22 RT (ICS @ UIBK) week 2 16/22
From program graphs to transition systems Structured operational semantics
. remise
e The notation _ premise means:

e Basic strategy: unfolding conclusion

If the proposition above the “solid line” (i.e., the premise) holds, then
the proposition under the fraction bar (i.e., the conclusion) holds

e state = location (current control) ¢ + data valuation 7
e initial state = initial location satisfying the initial condition gy

e Propositions and labeling

e propositions: “at ¢" and “x € D" for D C dom(x)
e (¢, m) is labeled with “at ¢" and all conditions that hold in n

o £ (" and g holds in 7 then (¢,n) < (¢, Effect(c,7))

Such "“if ..., then ...” propositions are also called inference rules

If the premise is a tautology, it may be omitted (as well as the “solid
line")

In the latter case, the rule is also called an axiom

RT (ICS @ UIBK) week 2 17/22 RT (ICS @ UIBK) week 2 18/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transition systems for program graphs refill N4 refill

The transition system TS(PG) of program graph

over set Var of variables is the tuple (S, Act,—, I, AP, L) where
e S = locx Eval(Var)

e — C S x Act xS is defined by the rule:

o | ={{t,n) [L€ Loco,n |~ go}
e AP = Loc U Cond(Var) and

PG = (Loc, Act, Effect, —, Locy, go)

(S0 AN nEg
(€,m) =2 (€', Effect(cr, m))

L({€,m) = {£} U {g € Cond(Var) | n |~ g}.

sget bget

coin ret_coin

RT (ICS @ UIBK) week 2 19/22 RT (ICS @ UIBK) week 2

Transition systems # finite automata Exercise

As opposed to finite automata, in a transition system:

there are no accept states can select the beverages. Additional actions select_beer and
set of states and actions may be countably infinite select_sprite may be helpful.

may have infinite branching e Construct the corresponding transition system for max = 2.
actions may be subject to synchronization (cf. next lecture) e Does your system satisfy the following property?
non-determinism has a different role Whenever the user infinitely often selects beer,

then she gets beer infinitely often.

Transition systems are appropriate for reactive system behaviour

RT (ICS @ UIBK) week 2 21/22 RT (ICS @ UIBK) week 2

20/22

e Modify the program graph of the vending machine such that the user

22/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Transition systems
	Program Graphs

