

Model checking overview

- model to describe the behaviour of systems
- digraphs where nodes represent states, and edges model transitions
- state:
 - the current phase of a traffic light
 - $\ensuremath{\,\bullet\,}$ the current values of all program variables + the program counter
- transition: ("state change")
 - a switch from one phase to the next one
 - the execution of a program statement

A *transition system TS* is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- $\longrightarrow \subseteq S \times Act \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L: S \rightarrow 2^{AP}$ is a labeling function

S and Act are either finite or countably infinite

Notation: $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \longrightarrow$

week 2

A beverage vending machine

Atomic propositions?

The role of nondeterminism

Executions

RT (ICS @ UIBK)

• An execution ρ of TS is an alternating sequence of states and actions

week 2

$$\varrho = s_0 \alpha_1 s_1 \alpha_2 \ldots \alpha_n s_n \ldots$$

such that

- $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \leqslant i \in \mathbb{N}$
- s₀ ∈ I

RT (ICS @ UIBK)

(W.I.o.g. consider only infinite executions)

• A trace of an execution is an infinite sequence of atomic propositions, i.e., $trace(\varrho) \in (2^{AP})^{\omega}$

week 2

$$trace(\varrho) = L(s_0) L(s_1) L(s_2) L(s_3) \ldots$$

• *Traces*(*TS*) is the set of all traces of all executions of *TS* It defines the observable behaviour of *TS*.

Here: nondeterminism is a feature!

- to model concurrency by interleaving
 - no assumption about the relative speed of processes
- to model implementation freedom
 - only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
 - use incomplete information

in automata theory, nondeterminism may be exponentially more succinct but that's not the issue here!

Transition systems

Example

RT (ICS @ UIBK)

Program graph representation

Program Graph

Beverage vending machine revisited

"Abstract" transitions:

 $start \xrightarrow{true:coin} select$ and $start \xrightarrow{true:refill} start$

 $select \xrightarrow{nsprite > 0:sget} start$ and $select \xrightarrow{nbeer > 0:bget} start$

select $\xrightarrow{nsprite=0 \land nbeer=0:ret_coin}$ start

Some preliminaries

- typed variables with a valuation that assigns values to variables
 - e.g., $\eta(x) = 17$ and $\eta(y) = green$
- the set of Boolean conditions over Var
 - propositional logic formulas whose propositions are of the form " $\overline{x} \in \overline{D}$ "
 - (nsprite ≥ 1) \land (y = blue) \land (x $\leq 2 \cdot x'$)
- effect of the actions is formalized by means of a mapping:

 $\textit{Effect}:\textit{Act} \times \textit{Eval}(\textit{Var}) \rightarrow \textit{Eval}(\textit{Var})$

• e.g., for action α use update x := y == blue? $2 \cdot x : x - 1$, and evaluation η is given by $\eta(x) = 17$ and $\eta(y) = red$

week 2

• Effect $(\alpha, \eta)(x) = \eta(x) - 1 = 16$, and Effect $(\alpha, \eta)(y) = \eta(y) = red$

week 2

Program graphs

A program graph PG over set Var of typed variables is a tuple

 $(Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$ where

- Loc is a set of locations with initial locations $Loc_0 \subseteq Loc$
- Act is a set of actions
- Effect : $Act \times Eval(Var) \rightarrow Eval(Var)$ is the effect function
- $\rightarrow \subseteq$ Loc \times (Cond(Var) \times Act) \times Loc, transition relation

week 2

• $g_0 \in Cond(Var)$ is the initial condition.

Notation: $\ell \xrightarrow{\mathbf{g}:\alpha} \ell'$ denotes $(\ell, \mathbf{g}, \alpha, \ell') \in \longrightarrow$

RT (ICS @ UIBK)

Program Graphs

From program graphs to transition systems

- Basic strategy: unfolding
 - state = location (current control) ℓ + data valuation η
 - initial state = initial location satisfying the initial condition g_0

• Propositions and labeling

- propositions: "at ℓ " and " $x \in D$ " for $D \subseteq dom(x)$
- ${}^{\bullet}$ $\langle\ell,\eta\rangle$ is labeled with "at ℓ " and all conditions that hold in η
- $\ell \xrightarrow{g:\alpha} \ell'$ and g holds in η then $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', Effect(\alpha, \eta) \rangle$

RT (ICS @ UIBK)

Beverage vending machine

- Loc = { start, select } with Loc₀ = { start }
- Act = { bget, sget, coin, ret_coin, refill }
- $Var = \{ nsprite, nbeer \}$ with domain $\{ 0, 1, \dots, max \}$

 $Effect(coin, \eta) = \eta$

- $Effect(ret_coin, \eta) = \eta$
- Effect(sget, η) = η [nsprite := nsprite-1]
 - $Effect(bget, \eta) = \eta[nbeer := nbeer 1]$
 - $Effect(refill, \eta) = [nsprite := max, nbeer := max]$
- $g_0 = (nsprite = max \land nbeer = max)$

Structured operational semantics

- The notation ______ means:
- If the proposition above the "solid line" (i.e., the premise) holds, then the proposition under the fraction bar (i.e., the conclusion) holds
- Such "if ..., then ..." propositions are also called *inference rules*

week 2

• If the premise is a tautology, it may be omitted (as well as the "solid line")

week 2

• In the latter case, the rule is also called an axiom

RT (ICS @ UIBK)

RT (ICS @ UIBK)

Transition systems for program graphs

The transition system TS(PG) of program graph

 $PG = (Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$

over set *Var* of variables is the tuple $(S, Act, \rightarrow, I, AP, L)$ where

• $S = Loc \times Eval(Var)$ • $\longrightarrow \subseteq S \times Act \times S$ is defined by the rule: $\frac{\ell \stackrel{g:\alpha}{\longrightarrow} \ell' \land \eta \models g}{\langle \ell, \eta \rangle \stackrel{\alpha}{\longrightarrow} \langle \ell', Effect(\alpha, \eta) \rangle}$ • $I = \{\langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \models g_0\}$ • $AP = Loc \cup Cond(Var)$ and $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in Cond(Var) \mid \eta \models g\}.$

week 2

Transition systems \neq finite automata

As opposed to finite automata, in a transition system:

- there are *no* accept states
- set of states and actions may be countably infinite
- may have infinite branching
- actions may be subject to synchronization (cf. next lecture)
- non-determinism has a different role

Transition systems are appropriate for reactive system behaviour

- Modify the program graph of the vending machine such that the user can select the beverages. Additional actions select_beer and select_sprite may be helpful.
- Construct the corresponding transition system for max = 2.
- Does your system satisfy the following property?

Whenever the user infinitely often selects beer, then she gets beer infinitely often.

week 2