
Introduction to Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

WS 2007/2008

RT (ICS @ UIBK) week 2 1/22

Model checking overview

requirements

Formalizing

property
specification

Model Checking

system

Modeling

system model

satisfied

insufficient
memory

violated +
counterexample

Today

RT (ICS @ UIBK) week 2 2/22

Transition systems

Transition systems

• model to describe the behaviour of systems

• digraphs where nodes represent states, and edges model transitions

• state:
• the current phase of a traffic light
• the current values of all program variables + the program counter

• transition: (“state change”)
• a switch from one phase to the next one
• the execution of a program statement

RT (ICS @ UIBK) week 2 4/22

Transition systems

Transition system

A transition system TS is a tuple (S ,Act,→, I ,AP, L) where

• S is a set of states

• Act is a set of actions

• −→ ⊆ S × Act× S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α−−→ s ′ instead of (s, α, s ′) ∈ −→

RT (ICS @ UIBK) week 2 5/22

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws07/imc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transition systems

A beverage vending machine

pay

select

insert coin

sprite
τ

get sprite

beerτ

get beer

states? actions?, transitions?, initial states?

RT (ICS @ UIBK) week 2 6/22

Transition systems

Atomic propositions?

RT (ICS @ UIBK) week 2 7/22

Transition systems

The role of nondeterminism

Here: nondeterminism is a feature!

• to model concurrency by interleaving
• no assumption about the relative speed of processes

• to model implementation freedom
• only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems
• use incomplete information

in automata theory, nondeterminism may be exponentially more succinct

but that’s not the issue here!

RT (ICS @ UIBK) week 2 8/22

Transition systems

Executions

• An execution % of TS is an alternating sequence of states and actions

% = s0 α1 s1 α2 . . . αn sn . . .

such that
• si

αi+1−−−→ si+1 for all 0 6 i ∈ IN
• s0 ∈ I

(W.l.o.g. consider only infinite executions)

• A trace of an execution is an infinite sequence of atomic propositions,
i.e., trace(%) ∈ (2AP)ω

trace(%) = L(s0) L(s1) L(s2) L(s3) . . .

• Traces(TS) is the set of all traces of all executions of TS
It defines the observable behaviour of TS.

RT (ICS @ UIBK) week 2 9/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transition systems

Example

RT (ICS @ UIBK) week 2 10/22

Program Graphs

Beverage vending machine revisited

“Abstract” transitions:

start true:coin−−−−−−→ select and start true:refill−−−−−−→ start

select nsprite>0 :sget−−−−−−−−−→ start and select nbeer>0 :bget−−−−−−−−−→ start

select nsprite=0 ∧ nbeer=0 :ret coin−−−−−−−−−−−−−−−−−−→ start

Action Effect on variables

coin

ret coin

sget nsprite := nsprite − 1

bget nbeer := nbeer − 1

refill nsprite := max ; nbeer := max

RT (ICS @ UIBK) week 2 12/22

Program Graphs

Program graph representation

RT (ICS @ UIBK) week 2 13/22

Program Graphs

Some preliminaries

• typed variables with a valuation that assigns values to variables
• e.g., η(x) = 17 and η(y) = green

• the set of Boolean conditions over Var
• propositional logic formulas whose propositions are of the form “x ∈ D”
• (nsprite > 1) ∧ (y = blue) ∧ (x 6 2·x ′)

• effect of the actions is formalized by means of a mapping:

Effect : Act× Eval(Var) → Eval(Var)

• e.g., for action α use update x := y == blue ? 2 · x : x − 1, and
evaluation η is given by η(x) = 17 and η(y) = red

• Effect(α, η)(x) = η(x)− 1 = 16, and Effect(α, η)(y) = η(y) = red

RT (ICS @ UIBK) week 2 14/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Graphs

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,−→, Loc0, g0) where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act× Eval(Var) → Eval(Var) is the effect function

• −→ ⊆ Loc× (Cond(Var)︸ ︷︷ ︸
Boolean conditions overVar

×Act)× Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: ` g :α−−−→ `′ denotes (`, g , α, `′) ∈ −→

RT (ICS @ UIBK) week 2 15/22

Program Graphs

Beverage vending machine

• Loc = { start, select } with Loc0 = { start }
• Act = { bget, sget, coin, ret coin, refill }
• Var = { nsprite, nbeer } with domain { 0, 1, . . . ,max }

•

Effect(coin, η) = η

Effect(ret coin, η) = η

Effect(sget, η) = η[nsprite := nsprite−1]

Effect(bget, η) = η[nbeer := nbeer−1]

Effect(refill , η) = [nsprite := max , nbeer := max]

• g0 = (nsprite = max ∧ nbeer = max)

RT (ICS @ UIBK) week 2 16/22

Program Graphs

From program graphs to transition systems

• Basic strategy: unfolding
• state = location (current control) ` + data valuation η
• initial state = initial location satisfying the initial condition g0

• Propositions and labeling
• propositions: “at `” and “x ∈ D” for D ⊆ dom(x)
• 〈`, η〉 is labeled with “at `” and all conditions that hold in η

• ` g :α−−−→ `′ and g holds in η then 〈`, η〉 α−−→〈`′,Effect(α, η)〉

RT (ICS @ UIBK) week 2 17/22

Program Graphs

Structured operational semantics

• The notation
premise

conclusion
means:

• If the proposition above the “solid line” (i.e., the premise) holds, then
the proposition under the fraction bar (i.e., the conclusion) holds

• Such “if . . ., then . . .” propositions are also called inference rules

• If the premise is a tautology, it may be omitted (as well as the “solid
line”)

• In the latter case, the rule is also called an axiom

RT (ICS @ UIBK) week 2 18/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Graphs

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect,−→, Loc0, g0)

over set Var of variables is the tuple (S ,Act,−→, I ,AP, L) where

• S = Loc× Eval(Var)

• −→⊆ S × Act × S is defined by the rule:
` g :α−−−→ `′ ∧ η |= g

〈`, η〉 α−−→〈`′,Effect(α, η)〉
• I = {〈`, η〉 | ` ∈ Loc0, η |= g0}
• AP = Loc ∪ Cond(Var) and

L(〈`, η〉) = {`} ∪ {g ∈ Cond(Var) | η |= g}.

RT (ICS @ UIBK) week 2 19/22

Program Graphs

refill

coin

bget sget

coincoin

bgetsget

bget sget

coin coin coin

sget

bget

bget

sget

coincoin

bgetsget

coin ret coin

refill refill

RT (ICS @ UIBK) week 2 20/22

Program Graphs

Transition systems 6= finite automata

As opposed to finite automata, in a transition system:

• there are no accept states

• set of states and actions may be countably infinite

• may have infinite branching

• actions may be subject to synchronization (cf. next lecture)

• non-determinism has a different role

Transition systems are appropriate for reactive system behaviour

RT (ICS @ UIBK) week 2 21/22

Program Graphs

Exercise

• Modify the program graph of the vending machine such that the user
can select the beverages. Additional actions select beer and
select sprite may be helpful.

• Construct the corresponding transition system for max = 2.

• Does your system satisfy the following property?

Whenever the user infinitely often selects beer,
then she gets beer infinitely often.

RT (ICS @ UIBK) week 2 22/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Transition systems
	Program Graphs

