

Introduction to Model Checking

René Thiemann

Institute of Computer Science University of Innsbruck

WS 2007/2008

RT (ICS @ UIBK) week 8

Last lecture: LTL

$$a \rightarrow a \rightarrow a \rightarrow a \rightarrow \cdots$$
 Ga

RT (ICS @ UIBK)

Properties expressable in LTL

- The traffic light never is red and green.
- Under the assumption that the traffic light is orange infinitely often, it is green infinitely often and red infinitely often.
- The sequence of lights is exactly red, red orange, green, orange, red, red orange, ...
- Whenever the traffic light shows red, at some moment before, both red and orange have been shown.

RT (ICS @ UIBK)

week

5/19

Last Lecture

Semantics over words

The language induced by LTL formula φ over $AP = \{a_1, \dots, a_n\}$ is:

$$\mathcal{L}(\varphi) = \left\{ w \in \left(2^{AP}\right)^{\omega} \mid w \models \varphi \right\}, \text{where } \models \text{is defined as follows:}$$

$$w \models a_i$$
 iff $A_0 = (*, \dots, *, \underbrace{1}_{i-\text{th pos.}}, *, \dots, *)^T$ iff $A_0^i = 1$

$$w \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad w \models \varphi_1 \text{ and } w \models \varphi_2$$

$$w \models \neg \varphi \quad \text{iff} \quad w \not\models \varphi$$

$$w \models X\varphi$$
 iff $w[1..] = A_1A_2A_3... \models \varphi$

$$w \models \varphi_1 \cup \varphi_2$$
 iff $\exists j \geqslant 0$. $w[j..] \models \varphi_2$ and $\forall 0 \leqslant i < j : w[i..] \models \varphi_1$

$$w \models \mathsf{F}\varphi$$
 iff $\exists j \geqslant 0. \ w[j..] \models \varphi$

$$w \models \mathsf{G}\varphi$$
 iff $\forall j \geqslant 0. \ w[j..] \models \varphi$

RT (ICS @ UIBK) week 8 6/19

Absorption and distributive laws

Absorption:
$$FGF\varphi \equiv GF\varphi$$

$$\mathsf{GFG} \varphi \equiv \mathsf{FG} \varphi$$

Distribution:
$$X(\varphi \cup \psi) \equiv (X \varphi) \cup (X \psi)$$

$$\mathsf{F}(\varphi \vee \psi) \equiv \mathsf{F}\varphi \vee \mathsf{F}\psi$$

$$G(\varphi \wedge \psi) \equiv G\varphi \wedge G\psi$$

but $F(\varphi \wedge \psi) \not\equiv F\varphi \wedge F\psi$

$$G(\varphi \vee \psi) \not\equiv G\varphi \vee G\psi$$

RT (ICS @ UIBK)

week :

8/19

More Laws of LTL

Distributive laws

$$F(a \wedge b) \not\equiv Fa \wedge Fb$$
 and $G(a \vee b) \not\equiv Ga \vee Gb$

$$TS \not\models F(a \land \neg a)$$
 and $TS \models Fa \land F \neg a$

RT (ICS @ UIBK) week 8 9/:

Expansion laws

Expansion:
$$\varphi \cup \psi \equiv \psi \vee (\varphi \wedge \mathsf{X}(\varphi \cup \psi))$$

 $\mathsf{F} \varphi \equiv \varphi \vee \mathsf{X} \mathsf{F} \varphi$
 $\mathsf{G} \varphi \equiv \varphi \wedge \mathsf{X} \mathsf{G} \varphi$

week 8

Fischer Ladner Closure

Let φ be an LTL formula over predicates a_1, \ldots, a_n .

Definition

The Fischer Ladner closure $cl(\varphi)$ is the list of sub-formulas of φ (starting from small formulas and ending with φ):

$$a_1,\ldots,a_n,\ldots,\varphi$$

Example

$$cl(\neg b \land (X \land U \land b)) = a, b, \neg b, X \land a, X \land U \land b, \neg b \land (X \land U \land b)$$

RT (ICS @ UIBK)

$\varphi ext{-Expansion}$

Idea: expand word by new row for each formula ψ in $cl(\varphi)$ write truth-values of ψ in i-th column for subword w[i..]

Definition

For $w \in (2^n)^\omega$ and LTL-formula φ with $cl(\varphi) = \varphi_1, \ldots, \varphi_m$ define the φ -expansion as word $v \in (2^m)^\omega$:

$$v[i]^j = 1 \text{ iff } w[i..] \models \varphi_j$$

RT (ICS @ UIBK)

weel

13/19

Translating LTL-formulas to GNBA

Example

$$\varphi$$
-expansion for $\varphi = \neg b \land (X \land U \land b)$

Idea of LTL to NBA-Translation

- NBA guesses the φ -expansion of w
- ... and checks that guesses are correct
- ullet ... and demands that value for whole formula is 1 for whole word w

Definition (Consistency Checks)

week

15/19

Translating LTL-formulas to GNBA

Consistency Checks and LTL-Models

Lemma

 $w \models \varphi$ iff there exists an expansion $v \in (2^m)^\omega$ of w such that

- 1. v satisfies the consistency checks
- 2. $v[0..]^m = 1$
- 3. whenever $\varphi_j=\varphi_{j_1}\ U\ \varphi_{j_2}$ and $v[i..]^j=1$ then there exists $i'\geqslant i$ such that $v[i'..]^{j_2}=1$

Translating LTL to GNBA

Definition (GNBA for an LTL formula φ)

Let $cl(\varphi) = a_1, \ldots, a_n, \varphi_{n+1}, \ldots, \varphi_m$ where $\varphi_m = \varphi$. Define $\mathcal{A}_{\varphi} = (2^m \uplus \{q_0\}, 2^n, q_0, \delta, F_1, \ldots, F_k)$ where

- $(c_1, ..., c_m)^T \in \delta((b_1, ..., b_m)^T, (d_1, ..., d_n)^T)$ iff
 - 1. $c_j = d_j$ for all $j \leqslant n$ (expansion)
 - 2. $(b_1, \ldots, b_m)^T (c_1, \ldots, c_m)^T$ is consistent (consistent expansion)
- $(c_1, ..., c_m)^T \in \delta(q_0, (d_1, ..., d_n)^T)$ iff
 - 1. $c_i = d_i$ for all $j \le n$ (expansion)
 - 2. $(c_1, \ldots, c_m)^T$ is consistent (consistent expansion)
 - $c_m = 1 \qquad (\varphi \text{ is satisfied})$

RT (ICS @ UIBK) week 8 17/19

Translating LTL-formulas to GNBAs

Soundness of Translation

Theorem

For every LTL formula φ

$$\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$$

Proof of Lemma.

By induction on φ using the consistency checks.

Proof of Theorem.

- ullet Construction of ${\cal A}_{arphi}$ directly corresponds to requirements 1 and 2 in Lemma
- Remaining difficulty: Show that visiting F_i infinitely often is the same as requirement 3 in Lemma for i-th U-subformula $\varphi_j = \varphi_{j_1} \cup \varphi_{j_2}$

RT (ICS @ UIBK) week 8 18/19

Exercises

Construct the NBA for the formula $a \cup X b$

- intuitively by hand
- using the construction on Slide 17

