First name:

Last name:

\qquad

Matriculation number:

\qquad

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Do not write with a pencil or a red pen. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	12	
2	24	
3	15	
4	19	
Σ	70	
Grade		

First name	Last name	Matriculation number

Exercise 1 (12 points)

Each correct answer is worth four points. A wrong answer results in zero points. Giving no answer is worth one point.

	Yes	No
The CTL formula (AGAF request) \Rightarrow (AGAF response) is equivalent to the LTL formula (G F request) \Rightarrow (GF response).		\checkmark
Every language $L \subseteq \Sigma^{\omega}$ can be recognized by some NBA. (We have the result as for NFAs: regular ω-languages do not cover all ω-languages. A formal prove can be done as follows: For all NBAs \mathcal{A} we know that if $\mathcal{L}(\mathcal{A}) \neq \varnothing$ then by the non-emptyness check we figure out a word $w=v u^{\omega} \in \mathcal{L}(\mathcal{A})$ for finite words v, u. Hence, the language $L=\{\pi\} \in\{0-9, .\}^{\omega}$ cannot be accepted by an NBA since π is not a rational number.)		\checkmark
Emptiness of $\mathcal{L}(\mathcal{A})$ for some GNBA \mathcal{A} can directly be decided using an SCC-based analysis, without first translating \mathcal{A} into some NBA. $(\mathcal{L}(\mathcal{A}) \neq \varnothing$ iff there is an SCC of \mathcal{A} that is reachable from the initial state and that contains a state from each set F_{i} of final states)	\checkmark	

Exercise $2(21+3$ points)

Consider the following nanoPromela program which has two clients $(i \in\{1,2\})$ which send their data via a scheduler to a printer. After a clients data d_{i} is delivered at the printer, client i gets an acknowledgement.

```
------- CLIENT i ------------
do :: true => ic ! i; dc ! d}\mp@subsup{\textrm{d}}{i}{};\mp@subsup{\textrm{ac}}{i}{}\mathrm{ ? ack od
------- SCHEDULER ------------
atomic { x := 0; d := "" };
do :: true => ic ? x; dc ? d; pc ! d; if :: x = 1 => acc ! ack :: x = 2 => ac m ! ack fi od
------- PRINTER -------------
do :: true => pc ? d; skip od
```

- Construct the channel-system for the nanoPromela program.

First name	Last name	Matriculation number

- Does the program contain a serious bug using asynchronous communication? If so, shortly describe it. Consider the following situation. Client 1 sends its id which is read by the scheduler. Then client 2 sends both id and data. Then client 1 sends its data, but the scheduler reads the data of client 2 , sends it to the printer, but then falsely sends the acknowledgement to client 1.

First name	Last name	Matriculation number

Exercise 3 (15 points)

Consider the above transition system $T S$ of a mutual exclusion protocol and the following CTL*-formula Φ.

$$
\Phi=\left(\mathrm{A}\left((\mathrm{FG} \neg \text { start }) \wedge \mathrm{A}\left(\neg \text { wait }_{1} \vee \mathrm{~F} \operatorname{crit}_{1}\right)\right)\right) \wedge \mathrm{AF}\left(\operatorname{crit}_{1} \vee \operatorname{crit}_{2}\right)
$$

Does $T S \vDash \Phi$ hold? Justify your answer by performing CTL*-model checking, and write down $\operatorname{Sat}(\Psi)$ for every state-subformula Ψ of Φ. Whenever one computes a set $\operatorname{Sat}(\mathrm{A} \varphi)$, additionally write down the corresponding LTL-formula φ^{\prime} that is checked. However, it is not necessary to perform LTL-model checking explicitly.

- Sat(start) $=\{2\}$
- Sat $\left(\right.$ wait $\left._{1}\right)=\{5,7,8,11\}$
- $\operatorname{Sat}\left(\right.$ crit $\left._{1}\right)=\{9,10\}$
- $\operatorname{Sat}\left(\mathrm{crit}_{2}\right)=\{6,11\}$
- $\operatorname{Sat}\left(\mathrm{A} \neg\right.$ wait $_{1} \vee \mathrm{~F}$ crit $\left._{1}\right)=\{1-11\}$. This step involves LTL model checking of the formula \neg wait $_{1} \vee \mathrm{~F}$ crit $_{1}$.

Alternatively one could have computed $\operatorname{Sat}\left(\neg\right.$ wait $\left._{1}\right)=\{1-4,6,9,10\}$ and then perform LTL model checking for the formula $a \vee \mathrm{~F}$ crit $_{1}$ where a is a new proposition which is valid in states $\operatorname{Sat}\left(\neg\right.$ wait $\left._{1}\right)$.

- Sat $\left(\mathrm{A}\left((\mathrm{FG} \neg\right.\right.$ start $) \wedge \mathrm{A}\left(\neg\right.$ wait $_{1} \vee \mathrm{~F}$ crit $\left.\left.\left._{1}\right)\right)\right)=\{1-11\}$. This step involves LTL model checking of the formula $\mathrm{A}((\mathrm{FG} \neg$ start $) \wedge b)$ where b is a new proposition that is valid in states $\operatorname{Sat}\left(\mathrm{A}\left(\neg\right.\right.$ wait $_{1} \vee \mathrm{~F}$ crit $\left.\left._{1}\right)\right)$, i.e., which is always valid.

First name	Last name	Matriculation number

Alternatively one could have computed $\operatorname{Sat}(\neg$ start $)=\{1,3-11\}$ and then perform LTL model checking for the formula $\mathrm{A}((\mathrm{FG} c) \wedge b)$ where b is as above and c is another new proposition which is valid in states Sat(\neg start).

- $\operatorname{Sat}\left(\mathrm{AF}\left(\operatorname{crit}_{1} \vee \operatorname{crit}_{2}\right)\right)=\{2-11\}$. This step involves LTL model checking of the formula $\mathrm{F}\left(\mathrm{crit}_{1} \vee \mathrm{crit}_{2}\right)$.

Alternatively one could have computed $\operatorname{Sat}\left(\operatorname{crit}_{1} \vee\right.$ crit $\left._{2}\right)=\{6,9-11\}$ and then perform LTL model checking for the formula $\mathrm{F} d$ where d is a new proposition which is valid in states $S a t\left(\mathrm{crit}_{1} \vee\right.$ crit $\left._{2}\right)$.

- $\operatorname{Sat}(\Phi)=\{1-11\} \cap\{2-11\}=\{2-11\}$

Since state 1 is initial and $1 \notin \operatorname{Sat}(\Phi)$ we conclude $T S \not \vDash \Phi$.

First name	Last name	Matriculation number

Exercise $4(18+1$ points)

Consider the following NBA \mathcal{A} and the following transition system $T S$.

- Construct the NBA $\mathcal{B}=T S \otimes \mathcal{A}$ which accepts $\mathcal{L}(T S) \cap \mathcal{L}(\mathcal{A})$.
- Is $\mathcal{L}(\mathcal{B})=\varnothing$? If not, then provide a word which is contained in $\mathcal{L}(\mathcal{B})$.
$\left(\binom{1}{1}\binom{0}{1}\right)^{\omega} \in \mathcal{L}(\mathcal{B})$.

