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Exercise 1 (12 points)

Each correct answer is worth four points. A wrong answer results in zero points. Giving no answer is worth one
point.

Yes No

The CTL formula (A GA F request) ⇒ (A GA F response) is equivalent to the LTL formula
(G F request)⇒ (G F response).

// ∅
��

// {request}
�� X

Every language L ⊆ Σω can be recognized by some NBA.
(We have the result as for NFAs: regular ω-languages do not cover all ω-languages. A
formal prove can be done as follows: For all NBAs A we know that if L(A) 6= ∅ then by
the non-emptyness check we figure out a word w = vuω ∈ L(A) for finite words v, u. Hence,
the language L = {π} ∈ {0− 9, .}ω cannot be accepted by an NBA since π is not a rational
number.)

X

Emptiness of L(A) for some GNBA A can directly be decided using an SCC-based analysis,
without first translating A into some NBA.
(L(A) 6= ∅ iff there is an SCC of A that is reachable from the initial state and that contains
a state from each set Fi of final states)

X

Exercise 2 (21 + 3 points)

Consider the following nanoPromela program which has two clients (i ∈ {1, 2}) which send their data via a
scheduler to a printer. After a clients data di is delivered at the printer, client i gets an acknowledgement.

------- CLIENT i ------------
do :: true => ic ! i; dc ! di; aci ? ack od

------- SCHEDULER -----------
atomic { x := 0; d := "" };
do :: true => ic ? x; dc ? d; pc ! d; if :: x = 1 => ac1 ! ack :: x = 2 => ac2 ! ack fi od

------- PRINTER -------------
do :: true => pc ? d; skip od

• Construct the channel-system for the nanoPromela program.
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do :: true => ic ! i; dc ! di; aci? ack od

dc ! di; aci? ack; do :: true => ic ! i; dc ! di; aci? ack od

aci? ack; do :: true => ic ! i; dc ! di; aci? ack od

ic ! i

dc ! di

aci? ack

atomic { x := 0; d := "" }; do ... od

do :: true => ic ? x; dc ? d; pc ! d; if :: x = 1 => ac1! ack :: x = 2 => ac2! ack fi od

dc ? d; pc ! d; if :: x = 1 => ac1! ack :: x = 2 => ac2! ack fi; do ... od

pc ! d; if :: x = 1 => ac1! ack :: x = 2 => ac2! ack fi; do ... od

if :: x = 1 => ac1! ack :: x = 2 => ac2! ack fi; do ... od

assign(x = 0, d = "")

ic ? x

dc ? d

pc ! d

x=1 : ac1? ackx=2 : ac2? ack

do :: true => pc ? d; skip od

skip; do :: true => pc ? d; skip od

id pc ? d

• Does the program contain a serious bug using asynchronous communication? If so, shortly describe it.

Consider the following situation. Client 1 sends its id which is read by the scheduler. Then client 2 sends
both id and data. Then client 1 sends its data, but the scheduler reads the data of client 2, sends it to the
printer, but then falsely sends the acknowledgement to client 1.
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Exercise 3 (15 points)

1 2 start

3

4 wait2 5wait1

7

wait1,wait2

8

wait1,wait2

11

wait1, crit2

10

crit1,wait2

6

crit2

9

crit1

Consider the above transition system TS of a mutual exclusion protocol and the following CTL∗-formula Φ.

Φ = (A ((F G¬start) ∧ A (¬wait1 ∨ F crit1))) ∧ A F (crit1 ∨ crit2)

Does TS |= Φ hold? Justify your answer by performing CTL∗-model checking, and write down Sat(Ψ) for
every state-subformula Ψ of Φ. Whenever one computes a set Sat(Aϕ), additionally write down the corresponding
LTL-formula ϕ′ that is checked. However, it is not necessary to perform LTL-model checking explicitly.

• Sat(start) = {2}

• Sat(wait1) = {5, 7, 8, 11}

• Sat(crit1) = {9, 10}

• Sat(crit2) = {6, 11}

• Sat(A¬wait1 ∨ F crit1) = {1− 11}. This step involves LTL model checking of the formula ¬wait1 ∨ F crit1.

Alternatively one could have computed Sat(¬wait1) = {1−4, 6, 9, 10} and then perform LTL model checking
for the formula a ∨ F crit1 where a is a new proposition which is valid in states Sat(¬wait1).

• Sat(A ((F G¬start)∧A (¬wait1∨F crit1))) = {1−11}. This step involves LTL model checking of the formula
A ((F G¬start) ∧ b) where b is a new proposition that is valid in states Sat(A (¬wait1 ∨ F crit1)), i.e., which
is always valid.
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Alternatively one could have computed Sat(¬start) = {1, 3 − 11} and then perform LTL model checking
for the formula A ((F G c) ∧ b) where b is as above and c is another new proposition which is valid in states
Sat(¬start).

• Sat(A F (crit1 ∨ crit2)) = {2− 11}. This step involves LTL model checking of the formula F (crit1 ∨ crit2).

Alternatively one could have computed Sat(crit1∨crit2) = {6, 9−11} and then perform LTL model checking
for the formula F d where d is a new proposition which is valid in states Sat(crit1 ∨ crit2).

• Sat(Φ) = {1− 11} ∩ {2− 11} = {2− 11}

Since state 1 is initial and 1 /∈ Sat(Φ) we conclude TS 6|= Φ.
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Exercise 4 (18 + 1 points)

Consider the following NBA A and the following transition system TS.
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• Construct the NBA B = TS⊗A which accepts L(TS) ∩ L(A).

• Is L(B) = ∅? If not, then provide a word which is contained in L(B).((
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) (
0
1

))ω

∈ L(B).


