University of Innsbruck Institute of Computer Science
15t Exam January 23, 2009

Functional Programming WS 2008/2009 LVA 703017

Solutions

1. Consider the lambda-term ¢t = (Azy.x (A\zy.y) vy y) Axyz.z x y) (\r.x).

[10] (a) Reduce t stepwise to normal form, using the leftmost innermost strategy.
Solution.
(Azy.x (Ary.y) vy) Aeyz.z zy) (Aex) —g Ay.(Azyz.z 2 y) (Azy.y) v y) (Az.x)
—5 (A\y.(Myz.z (Ary.y)) v y) (Az.x)
—g (A\y.(Az.z (A\zy.y) y) v) (Az.x)
—5 Ay (Azy.y) y) (Az.x)
—g (Az.z) (Azy.y) (A\zv.x)

—g (Ary.y) (\z.z)
—g AY-Y

[10] (b) Reduce t stepwise to normal form, using the leftmost outermost strategy.

Solution.

(Azy.x (Ary.y) vy) Aeyz.z zy) (Aex) —g Ay.(Azyz.z 2 y) Azy.y) v y) (Az.x)
(Azyz.z z y) (A\zy.y) (A\z.x) (A\z.x)
(A\yz.z (A\zy.y) y) (\z.x) (A\z.2)
(Az.z (Azy.y) (Az.x)) (Ax.x)

(Az.x) (A\zy.y) (A\z.x)

—3 (Azy.y) (A\z.z)

B
—p
—p
B

—pg AY-Y
[20] 2. Consider the OCaml functions
let rec (@) xs ys = match xs with [] -> ys
| x::xs => x::(xs @ ys)
let rec rev = function [] -> [

| x::xs -> (rev xs) @ [x]

Prove by induction that rev(xzs @ys) = (rev ys) @ (rev xs) for all lists xs and ys. You may use
associativity of ‘@” and the fact that [] is a right identity of ‘@’, i.e.,

(xrs@ys)@zs = xs @ (ysQzs) (%)

xs@ [l =uxs (%)

for all lists zs, ys, and zs.

Solution.

University of Innsbruck Institute of Computer Science
1%t Exam January 23, 2009

Functional Programming WS 2008/2009 LVA 703017

Solutions

Base Case (rs = []). The base case concludes by the derivation

rev(xzs Qys) = rev([] Qys) since zs = [1)

(ox))

by definition of rev)

(

=rev ys (by definition of @)
= (rev ys) @ [] (by
(

= (rev ys) @ (rev [1)

= (rev ys) @ (rev xs)

Step Case (zs =z :: zs). By IH it holds that rev (zs @ys) = (rev ys) @ (rev zs).
The step case concludes by the derivation

rev(zs Qys) = rev((z :: z8) Qys) (xs =z :: 29)
=rev(z :: (zsQys)) (def. of @)
= (rev(zs Qys)) @ [2] (def. of rev)

= ((rev ys) @ (rev zs)) @ [z] (by IH)
= (rev ys) @ ((rev zs) @ [z]) (by (%))
= (rev ys) @ (rev(z : : 29)) (def. of rev)
= (rev ys) @ (rev xs)
3. Consider the OCaml functions mem and unique, defined by:
let rec mem y = function [] -> false
| x::xs => x =y || mem y xs
let rec unique = function [] -> []
| x::xs -> if mem x xs then unique xs
else x :: unique xs
[10] (a) Implement a tail-recursive variant of unique.
Solution.

let unique xs =
let rec rev acc = function [] -> acc
| x::xs -> rev (x::acc) xs
in
let rec unique acc = function
| [-> rev [] acc
| x::xs -> if mem x xs then unique acc xs
else unique (x::acc) xs
in
unique [] xs

University of Innsbruck Institute of Computer Science

15t Exam January 23, 2009

Functional Programming WS 2008/2009 LVA 703017
Solutions

[10] (b) Use tupling to implement a function percentage : ’a -> ’a list -> float that deter-

mines for a given element x in a list xs the percentage it constitutes to the full list, e.g.,

percentage ’a’ [’a’;’b’;’c’;’a’] =0.5

Solution.

let percentage x ys =
let rec p x = function
| [-> (0,0)
| y::ys => let (i,j) = p x ys in if x = y then (i+1,j+1)
else (i,j+1)
in
if ys = [] then 0.0
else let (i,j) = p x ys in float_of_int i /. float_of_int j

4. Consider the M-term ¢t = (Az.y z) (Ayz.z y) w.

(5] (a) Reduce t to normal form.

Solution. t —gy (A\yz.z y) w
(5] (b) Give the set FVar(t) of free variables of t.

Solution. FVar(t) = {w,y}
[5] (c) Give the set BVar(t) of bound variables of ¢.

Solution. BVar(t) = {z,y,z}
(5] (d) Give the set Sub(t) of all subterms of ¢.

Solution. Sub(t) = {y,z,y z, \z.y x, 2,2 y,A\z.z2 y, \yz.z y, Az.y) (A\yz.z y),w,t}
5. Consider the typing environment

E ={1:int, 4+ :int — int — int, p:int — int — pair(int,int)}.

[10] (a) Prove the typing judgment E +let z =1 in p x (x + x) : pair(int, int).
Solution.
E,z :intk p:int — int — pair(int,int) E,z:intk x:int
- . — (app)
E,z:intkp z:int — pair(int,int) (spD)
a;
EF1:int E,z:intkp z (z+ x) : pair(int,int) (et) oP
€
Erlet z=1inp x (x +) : pair(int,int)
and « is
E z:intk (+):int—int—int E,z:intk x:int (sp)
a
E x:intk (+) z :int — int o E,z:intkz:int
(app)

E,z:intk (z+z):int

University of Innsbruck Institute of Computer Science

15t Exam January 23, 2009
Functional Programming WS 2008/2009 LVA 703017
Solutions
[10] (b) Transform the type inference problem F >let x =1 in p z (x +) : ap into a unification
problem.
Solution.

Exletz=1inpz (z+2z): o
let
=
Exl:apEz:a>pr(z+2):ap
con
int~ajEB,r:ap>px(z+x): o
a
:p>p
intxaFB,r:ap>pr:ay—apEBx:a>(@+z): a
a
g
intxaEB,r:ap>piaz—a —anEBr:abriagsEx:a>(x+2):a

con
=

int & aq;int — int — pair(int, int) & ag — as — ap;

Ezx:a>zx:ag;E,x:or>(x+12):ag

con

int & aq;int — int — pair(int, int) & ag — as — ap;

g ~ag;Eiriar>(x+2)ag

a
2P

int & aq;int — int — pair(int, int) & ag — as — ap;

aragBira>(+H)riag—anEr:an>r:ay

app

\:

int & aq;int — int — pair(int,int) = as — az — Qp;
agrag Eirioan>(4+) a5 —maqg—agEyr:ai>rias; E,riap>x: oy
con
int & aq;int — int — pair(int, int) & ag — as — ap;
al R agint—int—intxrxas a4 —magE.x:a>rias; E,r:ap >y
con
=
int & aq;int — int — pair(int, int) & ag — as — ap;
ap T agjint—int—intray > a4 — oo xas EBrioap ooy
con
int & aq;int — int — pair(int, int) & ag — as — ap;

a1 R agjint —int —intxR as — g — ag;] s o] X oy

