Functional Programming

WS 2008/2009

LVA 703017

Name: Matr.Nr.:

- **1.** Consider the lambda-term $t = (\lambda p.p \ (\lambda xy.y)) \ ((\lambda xyf.f \ x \ y) \ (\lambda x.x) \ (\lambda x.x)).$
 - (a) Reduce t stepwise to normal form, using the leftmost innermost strategy.
- [10] (b) Reduce t stepwise to normal form, using the leftmost outermost strategy.
- [20] **2.** Consider the type

[10]

[5]

```
type 'a btree = Leaf of 'a | Node of ('a btree * 'a * 'a btree)
```

together with the functions

Prove by induction that hd(flatten t) = leftmost t for all trees t. You may use the fact

$$hd(flatten \ t \ 0 \ xs) = hd(flatten \ t) \tag{*}$$

for all trees t and lists xs.

3. Consider the OCaml function replicate, defined by:

```
let rec replicate m n = if n < 1 then [] else m :: replicate m (n-1)
```

- [10] (a) Implement a tail-recursive variant of replicate.
- [10] (b) Implement the function split that splits a list into two lists, where the first contains all elements satisfying the given predicate and the second all the others, e.g.,

split (fun x
$$\rightarrow$$
 x \leftrightarrow 0) [1;2;0;3] = ([1;2;3],[0])

- **4.** Consider the λ -term $t = (\lambda x.x) (\lambda x.x) (\lambda x.x)$.
- [5] (a) Reduce t to normal form.
 - (b) Give the set $\mathcal{FV}ar(t)$ of free variables of t.
- [5] (c) Give the set $\mathcal{BV}ar(t)$ of bound variables of t.
- [5] (d) Give the set Sub(t) of all subterms of t.
- [10] **5.** (a) Transform the type inference problem $\varnothing \rhd \lambda x.x \ x : \alpha_0$ into a unification problem.
- [10] (b) Solve the following unification problem (if possible).

$$\alpha_1 \approx \alpha_3 \to \alpha_2$$
$$\alpha_1 \approx \alpha_3$$

$$\alpha_0 \approx \alpha_1 \rightarrow \alpha_2$$