University of Innsbruck Institute of Computer Science
2"d Exam February 27, 2009

Functional Programming WS 2008/2009 LVA 703017

Solutions

1. Consider the lambda-term ¢t = (Ap.p (Azy.y)) ((Azyf.f x y) (A\z.x) (Ax.x)).

[10] (a) Reduce t stepwise to normal form, using the leftmost innermost strategy.
Solution.
(Ap-p (Azy.y)) (Azyf.f z y) Az.z) (Az.z)) — (App (Azy.y)) (Ayf.f (Az.2) y) (Az.z))
— (Ap.p (Azy.y)) Af.f Az.z) (Az.x))
— (Mf.f Qzz) (Ax.x)) (Axy.y)
— (Azy.y) Az.x) (A\z.x)
— (\g.y) (o)
— A\T.T
[10] (b) Reduce t stepwise to normal form, using the leftmost outermost strategy.
Solution.
App (Azy.y)) (Aayf.fxy) Az.x) Aaz)) — Aeyf.f e y) Ava) Az.x) (Ary.y)
— (Myf.f Qz.x) y) Ar.x) (A\zy.y)
— (Mf.f Qzz) (Ax.x)) (Axy.y)
— (Azy.y) (Az.x) (Az.x)

— (Ay.y) (Ax.x)
— Ar.x

[20] 2. Consider the type

type ’a btree = Leaf of ’a | Node of (’a btree * ’a * ’a btree)

together with the functions

let hd(x::_) = x

let rec leftmost = function Leaf x -> x
| Node(1l,_,_) -> leftmost 1
let rec flatten = function Leaf x -> [x]

| Node(l,x,r) -> flatten 1 @ (x :: flatten r)
Prove by induction that hd(flatten t) = leftmost ¢ for all trees t. You may use the fact
hd(flatten ¢t @ zs) = hd(flatten t) (%)

for all trees t and lists xs.

Solution.

University of Innsbruck Institute of Computer Science
2"d Exam February 27, 2009

Functional Programming WS 2008/2009 LVA 703017

Solutions

Base Case (t = Leaf x). The base case concludes by the derivation

hd(flatten(Leaf z)) = hd([z]) (def. of flatten)
=z (def. of hd)
= leftmost ¢ (def. of leftmost)

Step Case (¢t = Node(l,z,r)). By IH we may assume the following two equations:

hd(flatten [) = leftmost [
hd(flatten r) = leftmost r

The step case concludes by the derivation

hd(flatten(Node(l,z,7))) = hd(flatten [@ (z :: flatten r)) (def. of flatten)
= hd(flatten [) (by (%))
= leftmost ! (by IH)
= leftmost ¢ (def. of leftmost)

3. Consider the OCaml function replicate, defined by:

let rec replicate mn = if n < 1 then [] else m :: replicate m (n-1)
[10] (a) Implement a tail-recursive variant of replicate.
Solution.

let replicate m n =

let rec replicate n acc =
if n < 1 then acc else replicate (n-1) (m::acc)
in

replicate n []

[10] (b) Implement the function split that splits a list into two lists, where the first contains all
elements satisfying the given predicate and the second all the others, e.g.,

split (fun x -> x <> 0) [1;2;0;3] = ([1;2;3],[0])

Solution.

let rec split p = function
|] -> (0,0
| x::xs -> let (1,r) = split p ys in if p x then (x::1,r)
else (1,x::1)

4. Consider the M-term ¢t = (Az.xz) (A\z.z) (Az.x).

(5] (a) Reduce ¢ to normal form.

Solution. t —g (Az.x) (A\x.z) —g (Az.2)

(5]

(5]

(5]

[10]

[10]

University of Innsbruck Institute of Computer Science
2"d Exam February 27, 2009

Functional Programming WS 2008/2009 LVA 703017

Solutions

5.

(b) Give the set FVar(t) of free variables of t.

Solution. FVar(t) = &
(c) Give the set BVar(t) of bound variables of ¢.

Solution. BVar(t) = {x}
(d) Give the set Sub(t) of all subterms of ¢.

Solution. Sub(t) = {t, (A\z.x) (\z.z), (Az.x),z}
(a) Transform the type inference problem @ > Az.z = : oy into a unification problem.

Solution.

DT> Ar.x T Qg

abs

T D>TTag, 00 R a1 — Q9
app
=

rT:apDriag — 0 >T a3 R o — 0

cons
=

o] R a3 =0, 01 D>xT oz a0 — Qg

cons
=

o] = 3 — ;0] R Q3;00 < @] — 2

(b) Solve the following unification problem (if possible).

a1 = (g3 — Q9
a1 = Q3

o) " p — Q9

Solution.

o] R a3 — 02,001 | O3;00 X] — 02

(v1)

:>{a1/a3—>a2}

ag — g & az;ap & (g — ag) — @

At this point the occur-check fails and hence given unification problem has no solution.

