Functional Programming

[10]

WS 2008/2009

LVA 703017

Solutions

- **1.** Consider the lambda-term $t = (\lambda p.p \ (\lambda xy.y)) \ ((\lambda xyf.f \ x \ y) \ (\lambda x.x) \ (\lambda x.x)).$
 - (a) Reduce t stepwise to normal form, using the leftmost innermost strategy.

 Solution.

$$(\lambda p.p \ (\lambda xy.y)) \ ((\lambda xyf.f \ x \ y) \ (\lambda x.x) \ (\lambda x.x)) \rightarrow (\lambda p.p \ (\lambda xy.y)) \ ((\lambda yf.f \ (\lambda x.x) \ y) \ (\lambda x.x))$$

$$\rightarrow (\lambda p.p \ (\lambda xy.y)) \ (\lambda f.f \ (\lambda x.x) \ (\lambda x.x))$$

$$\rightarrow (\lambda f.f \ (\lambda x.x) \ (\lambda x.x)) \ (\lambda xy.y)$$

$$\rightarrow (\lambda xy.y) \ (\lambda x.x) \ (\lambda x.x)$$

$$\rightarrow (\lambda y.y) \ (\lambda x.x)$$

$$\rightarrow \lambda x.x$$

[10] (b) Reduce t stepwise to normal form, using the leftmost outermost strategy.

Solution.

```
 (\lambda p.p \ (\lambda xy.y)) \ ((\lambda xyf.f \ x \ y) \ (\lambda x.x) \ (\lambda x.x)) \rightarrow (\lambda xyf.f \ x \ y) \ (\lambda x.x) \ (\lambda xx.y) \\ \rightarrow (\lambda yf.f \ (\lambda x.x) \ y) \ (\lambda x.x) \ (\lambda xy.y) \\ \rightarrow (\lambda f.f \ (\lambda x.x) \ (\lambda x.x)) \ (\lambda xy.y) \\ \rightarrow (\lambda xy.y) \ (\lambda x.x) \ (\lambda x.x) \\ \rightarrow (\lambda y.y) \ (\lambda x.x) \\ \rightarrow \lambda x.x
```

[20] **2.** Consider the type

type 'a btree = Leaf of 'a | Node of ('a btree * 'a * 'a btree)

Prove by induction that hd(flatten t) = leftmost t for all trees t. You may use the fact

$$hd(flatten \ t \ 0 \ xs) = hd(flatten \ t) \tag{*}$$

for all trees t and lists xs.

Solution.

Functional Programming

WS 2008/2009

LVA 703017

Solutions

Base Case (t = Leaf x). The base case concludes by the derivation

$$\begin{aligned} \operatorname{hd}(\operatorname{flatten}(\operatorname{Leaf}\,x)) &= \operatorname{hd}([x]) & (\operatorname{def. of \, flatten}) \\ &= x & (\operatorname{def. of \, hd}) \\ &= \operatorname{leftmost}\,t & (\operatorname{def. of \, leftmost}) \end{aligned}$$

Step Case (t = Node(l, x, r)). By IH we may assume the following two equations:

$$hd(flatten l) = leftmost l$$
$$hd(flatten r) = leftmost r$$

The step case concludes by the derivation

```
\begin{split} \operatorname{hd}(\operatorname{flatten}(\operatorname{Node}(l,x,r))) &= \operatorname{hd}(\operatorname{flatten} l \circ (x :: \operatorname{flatten} r)) & \quad (\operatorname{def. of flatten}) \\ &= \operatorname{hd}(\operatorname{flatten} l) & \quad (\operatorname{by} \ (\star)) \\ &= \operatorname{leftmost} l & \quad (\operatorname{by} \ \operatorname{IH}) \\ &= \operatorname{leftmost} t & \quad (\operatorname{def. of leftmost}) \end{split}
```

3. Consider the OCaml function replicate, defined by:

```
let rec replicate m n = if n < 1 then [] else m :: replicate m (n-1)</pre>
```

(a) Implement a tail-recursive variant of replicate.

Solution.

[10]

```
let replicate m n =
let rec replicate n acc =
  if n < 1 then acc else replicate (n-1) (m::acc)
  in
  replicate n []</pre>
```

[10] (b) Implement the function split that splits a list into two lists, where the first contains all elements satisfying the given predicate and the second all the others, e.g.,

```
split (fun x -> x \Leftrightarrow 0) [1;2;0;3] = ([1;2;3],[0])
```

Solution.

- **4.** Consider the λ -term $t = (\lambda x.x) (\lambda x.x) (\lambda x.x)$.
- [5] (a) Reduce t to normal form.

Solution.
$$t \to_{\beta} (\lambda x.x) (\lambda x.x) \to_{\beta} (\lambda x.x)$$

Functional Programming

WS 2008/2009

LVA 703017

Solutions

[5] (b) Give the set $\mathcal{FV}ar(t)$ of free variables of t.

Solution. $\mathcal{FV}ar(t) = \emptyset$

[5] (c) Give the set $\mathcal{BV}ar(t)$ of bound variables of t.

Solution. $\mathcal{BV}ar(t) = \{x\}$

[5] (d) Give the set Sub(t) of all subterms of t.

Solution. $Sub(t) = \{t, (\lambda x.x), (\lambda x.x), (\lambda x.x), x\}$

[10] **5.** (a) Transform the type inference problem $\varnothing \rhd \lambda x.x \ x:\alpha_0$ into a unification problem.

Solution.

$$\varnothing \rhd \lambda x. x \ x : \alpha_0 \\ \Longrightarrow \\ x : \alpha_1 \rhd x \ x : \alpha_2; \alpha_0 \approx \alpha_1 \rightarrow \alpha_2 \\ \Longrightarrow \\ x : \alpha_1 \rhd x : \alpha_3 \rightarrow \alpha_2; x : \alpha_1 \rhd x : \alpha_3; \alpha_0 \approx \alpha_1 \rightarrow \alpha_2 \\ \Longrightarrow \\ \alpha_1 \approx \alpha_3 \rightarrow \alpha_2; x : \alpha_1 \rhd x : \alpha_3; \alpha_0 \approx \alpha_1 \rightarrow \alpha_2 \\ \Longleftrightarrow \\ \alpha_1 \approx \alpha_3 \rightarrow \alpha_2; x : \alpha_1 \rhd x : \alpha_3; \alpha_0 \approx \alpha_1 \rightarrow \alpha_2 \\ \Longrightarrow \\ \alpha_1 \approx \alpha_3 \rightarrow \alpha_2; \alpha_1 \approx \alpha_3; \alpha_0 \approx \alpha_1 \rightarrow \alpha_2$$

[10] (b) Solve the following unification problem (if possible).

$$\alpha_1 \approx \alpha_3 \rightarrow \alpha_2$$
 $\alpha_1 \approx \alpha_3$
 $\alpha_0 \approx \alpha_1 \rightarrow \alpha_2$

Solution.

$$\begin{split} \alpha_1 &\approx \alpha_3 \to \alpha_2; \alpha_1 \approx \alpha_3; \alpha_0 \approx \alpha_1 \to \alpha_2 \\ &\Rightarrow^{(\mathsf{v}_1)}_{\{\alpha_1/\alpha_3 \to \alpha_2\}} \\ \alpha_3 &\to \alpha_2 \approx \alpha_3; \alpha_0 \approx (\alpha_3 \to \alpha_2) \to \alpha_2 \end{split}$$

At this point the occur-check fails and hence given unification problem has no solution.