University of Innsbruck Institute of Computer Science

3'd Exam May 14, 2009
Functional Programming WS 2008/2009 LVA 703017
Name: Matr.Nr.:

1. Consider the lambda-term t = (Ax y.z (z y)) (A\x.s x) z.
[10] (a) Reduce t stepwise to normal form, using the leftmost innermost strategy.

[10] (b) Reduce t stepwise to normal form, using the leftmost outermost strategy.

[20] 2. Consider the type
type nat = Z | S of nat

together with the functions

let rec (+) x ¥y
let rec (*) x ¥y

match x with Z >y | S x -> S(x + y)
match x with Z > Z | Sx >y + x *xy

Prove by induction that a * (b+¢) = a*b+a*c for all nats a, b, and ¢. You may use associativity
and commutativity of +, i.e.,

a+(b+c)=(a+b)+c (%)
atb=b+a (%x)
for all nats a, b, and c.
3. Consider the OCaml function initial, defined by:
let rec initial = function x::y::xs -> x :: initial(y::xs) | _ -> []

[10] (a) Implement a tail-recursive variant of initial. You may assume to have a tail-recursive
function rev (reversing a list) at hand.

[10] (b) Implement the function even_odd that splits a list into two lists, where the first contains all
elements having even indices and the second all those with odd indices.

4. Consider the A-term t = (A\z y.z (z y)) (A\z.s x) 2.

(5] (a) Ist in normal form? (Justify your answer.)
(5] (b) Give the set FVar(t) of free variables of t.
(5] (c) Give the set BVar(t) of bound variables of ¢.
(5] (d) Give the set Sub(t) of all subterms of ¢.
[10] 5. (a) Transform the type inference problem E > (Az y.z (z y)) s 0 : ap, using the environment
E ={s:int —int,0: int}, into a unification problem.
[10] (b) Solve the following unification problem (if possible).
a3 & ay — ag Qg —] — g N a3z — Q4
a3 X ag — Qy int — int &= ay
a5 g int ~ aq

gy = o5 — Qg

