
University of Innsbruck Institute of Computer Science

3rd Exam May 14, 2009

Functional Programming WS 2008/2009 LVA 703017

Name: Matr.Nr.:

1. Consider the lambda-term t = (λx y.x (x y)) (λx.s x) z.

(a) Reduce t stepwise to normal form, using the leftmost innermost strategy.[10]

(b) Reduce t stepwise to normal form, using the leftmost outermost strategy.[10]

2. Consider the type[20]

type nat = Z | S of nat

together with the functions

let rec (+) x y = match x with Z -> y | S x -> S(x + y)
let rec (*) x y = match x with Z -> Z | S x -> y + x * y

Prove by induction that a * (b + c) = a * b + a * c for all nats a, b, and c. You may use associativity
and commutativity of +, i.e.,

a + (b + c) = (a + b) + c (?)
a + b = b + a (??)

for all nats a, b, and c.

3. Consider the OCaml function initial, defined by:

let rec initial = function x::y::xs -> x :: initial(y::xs) | _ -> []

(a) Implement a tail-recursive variant of initial. You may assume to have a tail-recursive[10]
function rev (reversing a list) at hand.

(b) Implement the function even_odd that splits a list into two lists, where the first contains all[10]
elements having even indices and the second all those with odd indices.

4. Consider the λ-term t = (λx y.x (x y)) (λx.s x) z.

(a) Is t in normal form? (Justify your answer.)[5]

(b) Give the set FVar(t) of free variables of t.[5]

(c) Give the set BVar(t) of bound variables of t.[5]

(d) Give the set Sub(t) of all subterms of t.[5]

5. (a) Transform the type inference problem E B (λx y.x (x y)) s 0 : α0, using the environment[10]
E = {s : int→ int, 0 : int}, into a unification problem.

(b) Solve the following unification problem (if possible).[10]

α3 ≈ α7 → α6 α2 → α1 → α0 ≈ α3 → α4

α3 ≈ α8 → α7 int→ int ≈ α2

α5 ≈ α8 int ≈ α1

α4 ≈ α5 → α6

