Computational Logic
Institute of Computer Science
University of Innsbruck
21 November 2008
${ }^{1}$ christian.sternagel@uibk.ac.a
friedrich.neurauter@uibk.ac.at

Week 8 - Efficien

Induction on Lists

Induction Principle (without Types)

$$
(\underbrace{P([])}_{\text {base case }} \wedge \underbrace{\forall x . \forall x s .(P(x s) \rightarrow P(x:: x s))}_{\text {step case }}) \rightarrow \forall / s . P(I s)
$$

Lemma
@ is associative, i.e.,

$$
x s @(y s @ z s)=(x s @ y s) @ z s
$$

Proof.
Blackboard

Mathematical Induction

$$
\begin{aligned}
& \text { Induction Principle } \\
& (\underbrace{P(m)}_{\text {base case }} \wedge \underbrace{\forall k \geq m \cdot(P(k) \rightarrow P(k+1))}_{\text {step case }}) \rightarrow \forall n \geq m \cdot P(n) \\
& \text { Example }
\end{aligned}
$$

- first domino will fall
- if a domino falls also its right neighbor falls

Summary of Week 7

Structural Induction

Usage

- can be used on every variant type
- base cases correspond to non-recursive constructors
- step cases correspond to recursive constructors

Example

- lists
- trees
- λ-terms
-

This Week

Practice I
OCaml introduction, lists, strings, trees
Theory I
lambda-calculus, evaluation strategies, induction,
reasoning about functional programs
Practice II
efficiency, tail-recursion, combinator-parsing
Theory II
type checking, type inference
Advanced Topics
lazy evaluation, infinite data structures, monads, ...

(ICS@UIBK)

Mathematical (cont'd)

Mathematical
Definition (n-th Fibonacci number)

$$
\begin{aligned}
& \text { fibn } \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } n \leq 1 \\
\text { fib }(n-1)+\operatorname{fib}(n-2) & \text { otherwise }\end{cases} \\
& \text { Graph } \\
& \text { fib(n) }
\end{aligned}
$$

(ICS@UIBK) FP

OCaml

Definition
let rec fib $n=$ if $n<2$ then 1 else $f i b(n-1)+f i b(n-2)$
Example

$1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597$, 2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073, ...

Combining Several Results

Idea

- use tuples to return more than one result
- make results available as return values instead of recomputing them

Goal
compute average value of an integer list

Approach 1

- let average xs = IntLst.sum xs / Lst.length xs
- 2 traversals of xs are done

Combined Function

-

```
let rec sumlen = function
    | [] -> (0,0)
    | x::xs -> let (s,l) = sumlen xs in ( }\textrm{x}+\textrm{s},\textrm{l}+1
```

- one traversal of xs suffices

Fibonacci Numbers

Example
let rec fibpair $n=$ if $n<1$ then $(0,1)$ else if $\mathrm{n}=1$ then (1,1)
else let (f1,f2) = fibpair ($\mathrm{n}-1$) in (f2,f1+f2)
)

- this function is linear

Lemma

$$
\operatorname{fibpair}(n+1)=(\text { fib } n, \operatorname{fib}(n+1))
$$

Proof.
Blackboard

Recursion vs. Tail Recursion

Idea

- a function calling itself is recursive
- functions that mutually call each other are mutually recursive
- special kind of recursion is tail recursion

Definition (Tail recursion)
a function is called tail recursive if the last action in the function body is the recursive call

Even/Odd

Length

```
let rec length = function [] -> 0
                | x::xs -> 1 + length xs
```

- not tail recursive

Parameter Accumulation

Idea

- make function tail recursive
- provide data as input instead of computing it before recursive call
- Why? (tail recursive functions can automatically be transformed into space-efficient loops)

Average

-

let sumlen xs =
let rec sumlen sum len = function
| [] -> (sum,len)
| x::xs $->$ sumlen ($x+$ sum) (len+1) xs
in
sumlen 0 0 xs

- tail recursive

