
OLCmputational
gic

Functional Programming
WS 2008/09

Christian Sternagel (VO)1 Friedrich Neurauter (PS)2

Computational Logic
Institute of Computer Science

University of Innsbruck

9 January 2009

1christian.sternagel@uibk.ac.at
2friedrich.neurauter@uibk.ac.at

http://cl-informatik.uibk.ac.at

Week 12 - Laziness Summary of Week 11

Type Checking

I prove that some expression really has a given type w.r.t. an
environment

I formally: E ` e : τ

I use the inference rules of C to do so

CS (ICS@UIBK) FP 2/19

Week 12 - Laziness Summary of Week 11

Type Inference

I get the most general type for an expression w.r.t. an
environment

I formally: E B e : τ
I task is split into two parts:

1. transform given type inference problem into a unification
problem

2. solve the unification problem (result is substitution)

CS (ICS@UIBK) FP 3/19

Week 12 - Laziness

This Week

Practice I
OCaml introduction, lists, strings, trees

Theory I

lambda-calculus, evaluation strategies, induction,
reasoning about functional programs

Practice II
efficiency, tail-recursion, combinator-parsing

Theory II

type checking, type inference

Advanced Topics

lazy evaluation, infinite data structures, monads, . . .

CS (ICS@UIBK) FP 4/19

Week 12 - Laziness Lazy Lists

Motivation

Idea
Only compute values that are needed for the final result.

Example

In the program

let f1 x = x + 1

let f2 x = (* something non-terminating *)

let x = read_int() in

Lst.hd(f1 x :: f2 x)

the value of ‘f2 x’ is not needed. Nevertheless, the whole program
does not terminate.

CS (ICS@UIBK) FP 5/19

Week 12 - Laziness Lazy Lists

Custom Lazy Lists – 1st Iteration

Type

type ’a llist = Nil | Cons of (’a * ’a llist)

Functions

let hd = function Nil -> failwith "empty list"
| Cons(x,_) -> x

let rec from n = Cons(n,from(n+1))

CS (ICS@UIBK) FP 6/19

Week 12 - Laziness Lazy Lists

Custom Lazy Lists – 1st Iteration (cont’d)

Problem

hd(from 0);;
Stack overflow ...

Idea

I block computation of tail, until explicitly requested

I use unit function (i.e., of type unit -> ...)

CS (ICS@UIBK) FP 7/19

Week 12 - Laziness Lazy Lists

Custom Lazy Lists – 2nd Iteration

Type

type ’a llist = Nil | Cons of (’a * (unit -> ’a llist))

Functions

let hd = function Nil -> failwith "empty list"
| Cons(x,_) -> x

let rec from n = Cons(n,fun() -> from(n+1))

CS (ICS@UIBK) FP 8/19

Week 12 - Laziness Lazy Lists

Custom Lazy Lists – 2nd Iteration (cont’d)

Now

hd(from 0);;
- : int = 0

But

I strange that tail of llist is not llist itself

I use a mutually recursive type

CS (ICS@UIBK) FP 9/19

Week 12 - Laziness Lazy Lists

Custom Lazy Lists – 3rd Iteration

Type

type ’a cell = Nil
| Cons of (’a * ’a llist)

and ’a llist = (unit -> ’a cell)

Functions

let hd xs = match xs() with

| Nil -> failwith "empty list"
| Cons(x,_) -> x

let rec from n = fun() -> Cons(n,from(n+1))

CS (ICS@UIBK) FP 10/19

Week 12 - Laziness Lazy Lists

Converting a Lazy List Into a List

Function

let rec take n xs = if n < 1 then [] else match xs() with

| Nil -> []
| Cons(x,xs) -> x :: take (n-1) xs

CS (ICS@UIBK) FP 11/19

Week 12 - Laziness Fibonacci Numbers

Recall

Definition (i -th Fibonacci number Fi)

Fi =


0 if i = 0

1 if i = 1

Fi−1 + Fi−2 otherwise

Sequence

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 . . .

CS (ICS@UIBK) FP 12/19

Week 12 - Laziness Fibonacci Numbers

Idea

Visualization
starting at 0 0 1 1 2 3 5 8 13 21 . . .
starting at 1 1 1 2 3 5 8 13 21 . . .

(+) 1 2 3 5 8 13 21 34 . . .

Missing

I function to shift sequence to the left

I function to add two sequences

CS (ICS@UIBK) FP 13/19

Week 12 - Laziness Fibonacci Numbers

Implementation

let tl xs = match xs() with

| Nil -> failwith "empty list"
| Cons(_,xs) -> xs

let rec zip2_with f xs ys = fun() -> match (xs(),ys()) with

| (Cons(x,xs),Cons(y,ys)) -> Cons(f x y,zip2_with f xs ys)
| _ -> Nil

let rec fibs() = Cons(0,fun() -> Cons(1,
zip2_with (+) fibs (tl fibs)))

CS (ICS@UIBK) FP 14/19

Week 12 - Laziness Fibonacci Numbers

Problem

Not Lazy Enough

I we defer computation (i.e., call-by-name evaluation)

I we do not use memoization

Memoization

I prohibit recomputation of equal expressions

I built-in in OCaml’s support for lazyness

CS (ICS@UIBK) FP 15/19

Week 12 - Laziness The Sieve of Eratosthenes

Lazyness in OCaml
Keyword lazy

used to transform arbitrary expression into lazy expression

Example

I let e = lazy(print_string "test\n")

I

let f = lazy(let rec f() = print_int 1;f() in f())

Function Lazy.force

used to evaluate lazy expressions

Example

I Lazy.force e

I Lazy.force f

CS (ICS@UIBK) FP 16/19

Week 12 - Laziness The Sieve of Eratosthenes

Lazy Lists Again

Type

type ’a t = ’a cell Lazy.t
and ’a cell = Nil

| Cons of (’a * ’a t)

Functions

let rec filter p xs = lazy(match fc xs with

| Nil -> Nil
| Cons(x,xs) -> if p x then Cons(x,filter p xs)

else fc(filter p xs)
)

let rec take n xs = if n < 1 then [] else match fc xs with

| Nil -> []
| Cons(x,xs) -> x :: take (n-1) xs

CS (ICS@UIBK) FP 17/19

Week 12 - Laziness The Sieve of Eratosthenes

The Sieve of Eratosthenes

Algorithm

start with list of all natural numbers (from 2 on)

1. mark first element h as prime

2. remove all multiples of h

3. goto Step 1

CS (ICS@UIBK) FP 18/19

Week 12 - Laziness The Sieve of Eratosthenes

The Sieve in OCaml

let rec from n = lazy(Cons(n,from(n+1)))

let rec sieve xs = lazy(match fc xs with

| Nil -> Nil
| Cons(x,xs) ->
Cons(x,sieve(filter (fun y -> y mod x <> 0) xs))

)

let primes = sieve(from 2)

CS (ICS@UIBK) FP 19/19

	Week 12 - Laziness
	Summary of Week 11
	Lazy Lists
	Fibonacci Numbers
	The Sieve of Eratosthenes

