Game Theory Georg Moser Institute of Computer Science @ UIBK Winter 2008	Organisation Time and Place • Thursday, 16:00-18:00, HS 10 week 1 October 2 week 8 November 20 week 2 October 9 week 9 November 27 week 3 October 16 week 10 December 4 week 4 October 23 week 11 December 11 week 5 October 30 week 12 January 8 week 6 November 6 week 13 January 15 week 7 November 13 first exam January 22
Game Theory [1] Organisation Literature & Online Material Literature Roger B. Myerson Game Theory: Analysis of Conflict Harvard University Press, 1991 ISBN: 0-674-34116-3 Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay V. Vazirani (ed.) Algorithmic Game Theory Cambridge University Press, 2007 ISBN 978-0-521-87282-9 [Same Theory	CM (Institute of Computer Science @ UIBK) Game Theory 2/19 Organisation Online Material & Exam Online Material Transparencies and homework will be available from IP starting with 138.232 after the lecture; exercises and solutions will be discussed during the lecture Homework & Exam • officially there are no exercises as this course is labelled VO • however, without exercises you'll not learn anything • I'll give bi-weekly exercises which will be discussed in the lecture

Game Theory

chodule	
Jeneuun	

Schedule

week 1 week 2 week 3 week 4 week 5 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12 week 13	motivation, introduction to decision theory decision theory, basic model of game theory dominated strategies, bayesian games equilibria of strategic-form games evolution, resistance, and risk dominance sequential equilibria of extensive-form games subgame-perfect equilibria complexity of finding Nash equilibria equilibrium computation for two-player games refinements of equilibrium in strategic form persistent equilibria games with communication sender-receiver games	motivation, introduction to decision theory, decision theory basic model of game theory, dominated strategies, Bayesian games equilibria of strategic-form games, evolution, resistance, and risk dominance, sequential equilibra of extensive-form games, subgame-perfect equilibra, complexity of finding Nash equilibria, equilibrium computation for two-player games refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Introduction

Content

What is game theory?

GM (Institute of Computer Science @ UIBK

Introduction

game theory is conceivable as the study of mathematical models of conflict and cooperation between intelligent and rational decision-makers

Game Theory

Why is this part of a computer science major?

- why not, it is part of computer science major at Georgia Tech
- why not, Ariel Rubinstein writes

There are many similarities between logic and game theory. Whereas logic is the study of truth and inference, game theory is the study of strategic considerations.

and Scott Shenker writes

the Internet is the equilibrium, we just have to identify the game

History of game theory

5/19 GM (Institute of Computer Science @ UIBK)

Zermelo	Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels	1913	√
Borel	<i>La Théorie du Jeu et les Équations Intègrales à Noyau Symètrique</i>	1921	\checkmark
von Neumann	Zur Theorie der Gesellschaftsspiele	1928	\checkmark
von Neumann, Morgenstern	Theory of Games and Economic Behaviour	1944	√
Nash	The Bargaining Problem	1950	
Harsanyi	A Simplified Bargaining Model for the n- Person Cooperative Game	1963	
Selten	Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit	1965	

Game Theory

Game Theory

	Introduction
Logic and Games	Example Hintikka game consider the language of first-order, the game is played on formulas
Games in the history of logic	 legal moves for ∀:
it can be argued that already Aristotle made the connection between (propositional) logic and games; syllogism are introduced and argued for in	 given A ∧ B, ∀ chooses either A or B given ∀xF(x), ∀ chooses some instance a
the context of a specific game, a debate	 legal moves for ∃:
Logical Games	 given A ∨ B, ∃ chooses either A or B given ∃xF(x), ∃ chooses some instance a
• the domain of the game is set Ω	• the game for $\neg F$ is the dual of F
• \forall and \exists play by choosing elements from Ω	• \exists wins if and only if the encountered atomic formula is true
 an infinite sequence of elements of Ω is called a play a finite sequence is called position for each position a, τ(a) decides the next player 	Lemma given a formulas F , call the Hintikka game $\mathcal{G}(F)$; then \exists has a winning strategy if and only if F is valid (in first-order logic)
• W_{\forall} (W_{\exists}) denotes the set of plays where \forall (\exists) wins	Observation
	idea can be extended to temporal logics, in particular to the μ -calculus, etc.
GM (Institute of Computer Science @ UIBK) Game Theory 9/19 Content 9/19	GM (Institute of Computer Science @ UIBK) Game Theory 10/19 Content
Content	Decision-Theoretic Foundations
Content	Decision-Theoretic Foundations Definition game
Content	Decision-Theoretic Foundations Definition game • a game refers to any social situation involving two or more individuals
Content motivation, introduction to decision theory, decision theory	Decision-Theoretic Foundations Definition game • a game refers to any social situation involving two or more individuals • the players are supposed to be rational and intelligent
Content motivation, introduction to decision theory, decision theory basic model of game theory, dominated strategies, Bayesian games	Decision-Theoretic Foundations Definition game • a game refers to any social situation involving two or more individuals • the players are supposed to be rational and intelligent • rational means the player makes decisions consistently in pursuit of her own objective
Content motivation, introduction to decision theory, decision theory basic model of game theory, dominated strategies, Bayesian games equilibria of strategic-form games, evolution, resistance, and risk dominance, sequential equilibria of extensive-form games, subgame-perfect equilibria, complexity of finding Nash equilibria, equilibrium computation for two player games	 Decision-Theoretic Foundations Definition game a game refers to any social situation involving two or more individuals the players are supposed to be rational and intelligent rational means the player makes decisions consistently in pursuit of her own objective intelligent means the player can make the same inferences about the game that we can make
Content motivation, introduction to decision theory, decision theory basic model of game theory, dominated strategies, Bayesian games equilibria of strategic-form games, evolution, resistance, and risk dominance, sequential equilibria of extensive-form games, subgame-perfect equilibria, complexity of finding Nash equilibria, equilibrium computation for two-player games	Decision-Theoretic Foundations Definition game • a game refers to any social situation involving two or more individuals • the players are supposed to be rational and intelligent • rational means the player makes decisions consistently in pursuit of her own objective • intelligent means the player can make the same inferences about the game that we can make Definition
Content motivation, introduction to decision theory, decision theory basic model of game theory, dominated strategies, Bayesian games equilibria of strategic-form games, evolution, resistance, and risk dominance, sequential equilibria of extensive-form games, subgame-perfect equilibria, complexity of finding Nash equilibria, equilibrium computation for two-player games refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games	 Decision-Theoretic Foundations Definition game a game refers to any social situation involving two or more individuals the players are supposed to be rational and intelligent rational means the player makes decisions consistently in pursuit of her own objective intelligent means the player can make the same inferences about the game that we can make Definition probability distributions Δ(Z) over Z are defined as follows:

12/19

Game Theory

Example horse lotteries Definition lotterv suppose the only probabilities that occur in $\Delta(X)$ are 1 or 0, then the final • let Ω denote set of possible states, and let X denote the set of prizes prize (say the share value) depends only on the state (the policy of the • Ω and X are finite US), such states are called subjective unkowns • a lottery is a function f that maps Ω to $\Delta(X)$ such that $\sum f(x|t) = 1$ $t\in \Omega$ Definition event • an event is a subset of Ω • the set of lotteries is defined as follows: • the sets of all events Ξ is defined as $L = \{ f \mid \Omega \to \Delta(X) \}$

• let t be a state, $f(\cdot|t)$ denotes the probability distribution over X in t:

$$f(\cdot|t) = (f(x|t))_{x \in X} \in \Delta(X)$$

Example

roulette lotteries

suppose $\Omega = \emptyset$, then lotteries depend only objective unknowns that can be assigned probabilities, for example the prize is determined by a coin toss

$$\Xi = \{ S \mid S \subseteq \Omega \text{ and } S \neq \varnothing \}$$

Game Theory

Definition

let f, g be lotteries and S an event

- we write $f \succeq_S g$ if f is at least as desirable as g
- $f \sim_S g$ iff $f \succeq_S g$ and $g \succeq_S f$
- $f \succ_S g$ iff $f \succeq_S g$ and $f \not\sim_S g$

GM (Institute of Computer Science @ UIBK) Game Theory 13/19	GM (Institute of Computer Science @ UIBK) Game Theory 14/1
Definition let $\alpha \in [0, 1]$, let f , g be lotteries • the compound lottery $\alpha f + (1 - \alpha)g$ is the defined as: $\alpha f + (1 - \alpha)g(x t) = \alpha f(x t) + (1 - \alpha)g(x t)$ • the lottery $[x]$ always get prize x for sure: $[x](y t) = 1$ if $y = x$ $[x](y t) = 0$ if $y \neq x$ where $t \in \Omega$ Example what is $\alpha[x] + (1 - \alpha)[y]$?	Content Axiomatic presentation Axiom (totality) • $f \succcurlyeq_S g \text{ or } g \succcurlyeq_S f$ • if $f \succcurlyeq_S g$ and $g \succcurlyeq_S h$, then $f \succcurlyeq_S h$ Axiom (relevance) if for all $t \in S$: $f(\cdot t) = g(\cdot t)$, then $f \sim_S g$ Axiom (monotonicity) if $f \succ_S h$ and $0 \le \beta < \alpha \le 1$, then $\alpha f + (1 - \alpha)h \succ_S \beta f + (1 - \beta)h$ Axiom (continuity) if $f \succcurlyeq_S g$ and $g \succcurlyeq_S h$, then $\exists \gamma \in [0, 1]$ such that $g \sim_S \gamma f + (1 - \gamma)h$

GM (Institute of Computer Science @ UIBK

Content	Content
Substitution Axioms	Regularity Axioms
Axiom (objective substitution) if $e \succeq_S f$ and $g \succeq_S h$ and $\alpha \in [0, 1]$, then $\alpha e + (1 - \alpha)g \succeq_S \alpha f + (1 - \alpha)h$ Axiom (strict objective substitution) if $e \succ_S f$ and $g \succeq_S h$ and $\alpha \in (0, 1]$, then $\alpha e + (1 - \alpha)g \succ_S \alpha f + (1 - \alpha)h$	Axiom (interest) $\forall t \in \Omega, \exists x, y \in X \text{ such that } [y] \succ_{\{t\}} [x]$ Axiom (state neutrality) $\forall r, t \in \Omega, \text{ if } f(\cdot r) = f(\cdot t) \text{ and } g(\cdot r) = g(\cdot t), \text{ and } f \succcurlyeq_{\{r\}} g, \text{ then } f \succcurlyeq_{\{t\}} g$
Axiom (subjective substitution) if $f \succcurlyeq_S g$ and $f \succcurlyeq_T g$ and $S \cap T = \emptyset$, then $f \succcurlyeq_{S \cup T} g$	Definition conditional-probability a conditional-probability function is any function $p: \Xi \to \Delta(\Omega)$ such that $p(t S) = 0$ if $t \notin S$ $\sum p(r S) = 1$
Axiom (strict subjective substitution) if $f \succ_S g$ and $f \succ_T g$ and $S \cap T = \emptyset$, then $f \succ_{S \cup T} g$	$\begin{array}{c} p(r S) = 0 & \text{if } r \neq S \\ \hline P(r S) = 1 \\ \hline$

17/19 GM (Institute of Computer Science @ UIBK

Game Theory

18/19

ontent

Expected Utility Maximisation Theorem

Definition

GM (Institute of Computer Science @ UIBK

let p denote a conditional-probability function and u any utility function, then the expected utility determined by lottery f is defined as:

Game Theory

$$E_{\rho}(u(f)|S) = \sum_{t\in S} p(t|S) \sum_{x\in X} u(x,t) f(x|t)$$

Theorem

the axioms (with state neutrality) are satisfied if and only if there exists a (state-independent) utility function u and a conditional-probability function such that

- 1 $\max_{x \in X} u(x, t) = 1$ and $\min_{x \in X} u(x, t) = 0$
- 2 $p(R|T) = p(R|S)p(S|T) \forall R, S, T$ so that $R \subseteq S \subseteq T$ and $S \neq \emptyset$ where $p(R|S) = \sum_{r \in R} p(r|S)$

Game Theory

3 $f \succ_S g$ if and only if $E_p(u(f)|S) \ge E_p(u(g)|S)$