

Summary of Last Lecture

Notation

• *M* denotes the set of *m* pure strategies of player 1 and *N* denotes the set of *n* pure strategies of player 2

$$M = \{1, \ldots, m\}$$
 $N = \{m + 1, \ldots, m + n\}$

• $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, $A, B \in \mathbb{R}^{m \times n}$

Theorem

best response

let x, y be be mixed strategies, then x is best response to y if and only if

 $x_i > 0$ implies $(Ay)_i = u = \max\{(Ay)_k \mid k \in M\}$ $\forall i \in M$

Proof

on blackboard

Summary

Definition

• a polyhedron $P \in \mathbb{R}^d$ is a set

 $\{z \in \mathbb{R}^d \mid Cz \leqslant q\}$ for some matrix C, vector q

- *P* is full-dimensional if it has dimension d(i.e., d + 1 (but not more) affinally independent element
 - (i.e., d + 1 (but not more) affinely independent elements)
- *P* is a polytope if bounded
- the face of P is $\{z \in P \mid c^{\top}z = q_0\}$ for $c \in \mathbb{R}^d$, $q_0 \in \mathbb{R}$
- a vertex of P is the unique element of a zero-dimensional face of P
- an edge is a one-dimensional face of P
- a facet of a d-dimensional P is a d 1-dimensional face

Observation

Any nonempty face F of a polyhedron P can be obtained by turning some of the inequalities of $P = \{z \in \mathbb{R}^d \mid Cz \leq q\}$ into equalities; such inequalities are called binding

Game Theory

GM (Institute of Computer Science @ UIBK) Summary

The Best Response Polyhedron

Definition

best response polyhedra for player $1 \mbox{ and } 2$

$$\overline{P} = \{ (x, v) \in \mathbb{R}^m \times \mathbb{R} \mid x \ge \mathbf{0}, \mathbf{1}^\top x = 1, B^\top x \le \mathbf{1}_v \}$$
$$\overline{Q} = \{ (y, u) \in \mathbb{R}^n \times \mathbb{R} \mid Ay \le \mathbf{1}_u, y \ge \mathbf{0}, \mathbf{1}^\top y = 1 \}$$

Example consider Γ

$$A = \begin{pmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 2 \\ 2 & 6 \\ 3 & 1 \end{pmatrix}$$

then

$$\overline{Q} = \left\{ (y_4, y_5, u) \mid \frac{3y_4 + 3y_5 \leqslant u, \ 3y_4 + 5y_5 \leqslant u, \ 6y_5 \leqslant u, \\ y_4 \geqslant 0, \ y_5 \geqslant 0, \ y_4 + y_5 = 1 \right\}$$

Definition

a point $(y, u) \in \overline{Q}$ has label $k \in M \cup N$ if

- the k^{th} inequality in the definition of \overline{Q} is binding
- i.e., $\sum_{j \in N} a_{kj} y_j = u$ if $k = i \in M$ or
- for $k = j \in N$, $y_j = 0$

Example

the point $(\frac{2}{3}, \frac{1}{3}, 3)$ has labels 1 and 2, as x_1 , x_2 are best responses to y for player 1 that yields pay-off 3

Game Theor

Lemma

an equilibrium (x, y) is a pair such that

- pair $((x, v), (y, u)) \in \overline{P} \times \overline{Q}$
- this pair is completely labeled, i,e.
 every label k ∈ M ∪ N labels either (x, v) or (y, u)

GM (Institute of Computer Science @ UIBK) Summary

. . . .

Equilibria by Vertex Enumeration

Assumptions

suppose A and B^{\top} are non-negative and have no zero columns

Algorithm

- INPUT: a nondegenerate bimatrix game
- OUTPUT: all Nash equilibria

Method

$$1 \quad \forall \ x \in P \setminus \{\mathbf{0}\}$$

- **2** $\forall y \in Q \setminus \{\mathbf{0}\}$
- 3 if (x, y) is completely labeled, output the Nash equilibrium

$$(x \cdot \frac{1}{\mathbf{1}^{\top} x}, y \cdot \frac{1}{\mathbf{1}^{\top} y})$$

Content

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, Bayesian games

equilibria of strategic-form games, evolution, resistance, and risk dominance, two-person zero-sum games

efficient computation of Nash equilibria

sequential equilibria of extensive-form games, subgame-perfect equilibria, complexity of finding Nash equilibria, equilibrium computation for two-player games

GM (Institute of Computer Science @ UIBK) Game Theory 138/145 consider Γ , $A = \begin{pmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 2 \\ 2 & 6 \\ 3 & 1 \end{pmatrix}$ the polyhedra \overline{P} , \overline{Q} are defined as follows: $\overline{P} = \begin{cases} x_1 \neq 0 & & \\ x_2 \geq 0 & & \\ x_3 \geq 0 & & \\ x_3 \geq 0 & & \\ 3x_1 + 2x_2 + 3x_3 \leq v & & \\ 2x_1 + 6x_2 + 1x_3 \leq v & & \\ x_1 + x_2 + x_3 = 1 & \\ \end{cases}$ $\overline{Q} = \begin{cases} 3y_4 + 3y_5 \leqslant u & (1) \\ 3y_4 + 5y_5 \leqslant u & (2) \\ 6y_5 \leqslant u & (3) \\ y_4 \geqslant 0 & (4) \\ y_5 \geqslant 0 & (5) \\ y_4 + y_5 = 1 & \end{cases}$

Definition

the normalised polytopes have the following generic form:

$$P = \{ x \in \mathbb{R}^m \times \mathbb{R} \mid x \ge \mathbf{0}, B^{\top} x \le \mathbf{1} \}$$
$$Q = \{ y \in \mathbb{R}^n \times \mathbb{R} \mid Ay \le \mathbf{1}, y \ge \mathbf{0} \}$$

Example

consider for example Q:

$$Q = \begin{cases} 3\frac{y_4}{u} + 3\frac{y_5}{u} \leq 1 & (1) \\ 3\frac{y_4}{u} + 5\frac{y_5}{u} \leq 1 & (2) \\ 6\frac{y_5}{u} \leq 1 & (3) \\ \vdots & & \end{cases}$$

Observation

- *P*, *Q* are bounded, hence polytopes
- in this transformation labels are preserved
- every vertex in P(Q) has m(n) labels as the game is nondegenerated

		140/145
GM (Institute of Computer Science @ UIBK; Labeled Polytopes revisited	Game Theory	140/145
Example		
points of polytope <i>P</i> :		
0 = (0, 0, 0)	labels (1) (2) (3)	
0 = (0, 0, 0)		
$a = (\frac{1}{2}, 0, 0)$	labels ②, ③, ④	
3		
$b = (\frac{2}{7}, \frac{1}{14}, 0)$	labels 3, 4, 5	
1		
$c = (0, \frac{1}{6}, 0)$	labels 1, 3, 5	
$d = (0, \frac{1}{8}, \frac{1}{4})$	labels 1, 4, 5	
1		
$e = (0, 0, \frac{1}{3})$	labels ①, ②, ④	
5		

Example (cont'd) points of polytope Q:

<i>p</i> =	$(0, \frac{1}{6})$
q =	$\big(\frac{1}{12},\frac{1}{6}\big)$
<i>r</i> =	$\bigl(\frac{1}{6},\frac{1}{9}\bigr)$
<i>s</i> =	$(\frac{1}{3}, 0)$

1

labels 3, 4

labels 2, 3

labels 1, 2

labels 1, 5

GM (Institute of Computer Science @ UIBK) Lemke-Howson Algorithm

Lemke-Howson (LH) Algorithm

Algorithm

- INPUT: a nondegenerate bimatrix game
- OUTPUT: one Nash equilibria together with proof of existence

Game Theory

Notation

- dropping a label / of a vertex x means
 traversing the unique edge that has all the labels of x except /
- at the endpoint there is a vertex that has a new label this label is picked up

Method

- **1** start with the artifical equilibrium (0, 0)
- **2** pick a pure strategy $k \in M \cup N$ that is dropped
- 3 this label is called the missing label
- 4 traverse along the unique edge to the endpoint (in P or Q)

5 loop

- denote the new vertex pair as (x, y)
- let / denote the label that is picked up
- if l = k, exit loop with Nash equilibrium (x, y)
- otherwise drop *I* in the other polytope (*Q* or *P*)

Corollary

a nondegenerate bimatrix game has an odd number of Nash equilibria

Proof

endpoints of paths are either Nash equilibria or $(\mathbf{0}, \mathbf{0})$ number of endpoints is even

GM (Institute of Computer Science @ UIBK) Game Theory
Lemke-Howson Algorithm

Example some equilibria may remain hidden to the LH algorithm:

$$A = B^{\top} = \begin{pmatrix} 3 & 3 & 0 \\ 4 & 0 & 1 \\ 0 & 4 & 5 \end{pmatrix}$$

Implementation

- the LH algorithm can be implemented algebraically by pivoting in each step
- pivoting can be handled in a similar way as in the simplex method; this yields a polytime algorithm for each step