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Summary

Summary of Last Lecture

Notation
� M denotes the set of m pure strategies of player 1 and N denotes the

set of n pure strategies of player 2

M = {1, . . . ,m} N = {m + 1, . . . ,m + n}
� x ∈ Rm, y ∈ Rn, A, B ∈ Rm×n

Theorem best response
let x , y be be mixed strategies, then x is best response to y if and only if

xi > 0 implies (Ay)i = u = max{(Ay)k | k ∈ M} ∀i ∈ M

Proof
on blackboard
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Summary

Definition
� a polyhedron P ∈ Rd is a set

{z ∈ Rd | Cz 6 q} for some matrix C , vector q

� P is full-dimensional if it has dimension d
(i.e., d + 1 (but not more) affinely independent elements)

� P is a polytope if bounded

� the face of P is {z ∈ P | c>z = q0}
for c ∈ Rd , q0 ∈ R

� a vertex of P is the unique element of a zero-dimensional face of P

� an edge is a one-dimensional face of P

� a facet of a d-dimensional P is a d − 1-dimensional face

Observation
Any nonempty face F of a polyhedron P can be obtained by turning some
of the inequalities of P = {z ∈ Rd | Cz 6 q} into equalities; such
inequalities are called binding
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Summary

The Best Response Polyhedron

Definition
best response polyhedra for player 1 and 2

P = {(x , v) ∈ Rm × R | x > 0, 1>x = 1, B>x 6 1v}
Q = {(y , u) ∈ Rn × R | Ay 6 1u, y > 0, 1>y = 1}

Example
consider Γ

A =

3 3
2 5
0 6

 B =

3 2
2 6
3 1


then

Q =

{
(y4, y5, u) | 3y4 + 3y5 6 u, 3y4 + 5y5 6 u, 6y5 6 u,

y4 > 0, y5 > 0, y4 + y5 = 1

}
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Summary

Definition
a point (y , u) ∈ Q has label k ∈ M ∪ N if

� the kth inequality in the definition of Q is binding

� i.e.,
∑

j∈N akjyj = u if k = i ∈ M or

� for k = j ∈ N, yj = 0

Example
the point (2

3 , 1
3 , 3) has labels 1 and 2, as x1, x2 are best responses to y for

player 1 that yields pay-off 3

Lemma
an equilibrium (x , y) is a pair such that

� pair ((x , v), (y , u)) ∈ P × Q

� this pair is completely labeled, i,e.
every label k ∈ M ∪ N labels either (x , v) or (y , u)
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Summary

Equilibria by Vertex Enumeration

Assumptions
suppose A and B> are non-negative and have no zero columns

Algorithm
� input: a nondegenerate bimatrix game

� output: all Nash equilibria

Method
1 ∀ x ∈ P \ {0}
2 ∀ y ∈ Q \ {0}
3 if (x , y) is completely labeled, output the Nash equilibrium

(x · 1

1>x
, y · 1

1>y
)

GM (Institute of Computer Science @ UIBK) Game Theory 137/145



Content

Content

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, Bayesian games

equilibria of strategic-form games, evolution, resistance, and risk
dominance, two-person zero-sum games

efficient computation of Nash equilibria

sequential equilibria of extensive-form games, subgame-perfect equilibria,
complexity of finding Nash equilibria, equilibrium computation for
two-player games
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Labeled Polytopes revisited

consider Γ, A =

3 3
2 5
0 6

 and B =

3 2
2 6
3 1


the polyhedra P, Q are defined as follows:

P =


(x1, x2, x3, v) |

x1 > 0 À

x2 > 0 Á

x3 > 0 Â

3x1 + 2x2 + 3x3 6 v Ã

2x1 + 6x2 + 1x3 6 v Ä

x1 + x2 + x3 = 1



Q =


(y4, y5, u) |

3y4 + 3y5 6 u À

3y4 + 5y5 6 u Á

6y5 6 u Â

y4 > 0 Ã

y5 > 0 Ä

y4 + y5 = 1


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Labeled Polytopes revisited

Definition
the normalised polytopes have the following generic form:

P = {x ∈ Rm × R | x > 0, B>x 6 1}
Q = {y ∈ Rn × R | Ay 6 1, y > 0}

Example
consider for example Q:

Q =

(
y4

u
,
y5

u
) |

3 y4
u + 3 y5

u 6 1 À

3 y4
u + 5 y5

u 6 1 Á

6 y5
u 6 1 Â

...


Observation

� P, Q are bounded, hence polytopes

� in this transformation labels are preserved

� every vertex in P (Q) has m (n) labels as the game is nondegenerated
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Labeled Polytopes revisited

Example
points of polytope P:

0 = (0, 0, 0) labels À, Á, Â

a = (
1

3
, 0, 0) labels Á, Â, Ã

b = (
2

7
,

1

14
, 0) labels Â, Ã, Ä

c = (0,
1

6
, 0) labels À, Â, Ä

d = (0,
1

8
,

1

4
) labels À, Ã, Ä

e = (0, 0,
1

3
) labels À, Á, Ã
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Labeled Polytopes revisited

Example (cont’d)
points of polytope Q:

p = (0,
1

6
) labels Â, Ã

q = (
1

12
,

1

6
) labels Á, Â

r = (
1

6
,

1

9
) labels À, Á

s = (
1

3
, 0) labels À, Ä
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Lemke-Howson Algorithm

Lemke-Howson (LH) Algorithm

Algorithm
� input: a nondegenerate bimatrix game

� output: one Nash equilibria together with proof of existence

Notation
� dropping a label l of a vertex x means

traversing the unique edge that has all the labels of x except l

� at the endpoint there is a vertex that has a new label
this label is picked up
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Lemke-Howson Algorithm

Method
1 start with the artifical equilibrium (0, 0)

2 pick a pure strategy k ∈ M ∪ N that is dropped

3 this label is called the missing label

4 traverse along the unique edge to the endpoint (in P or Q)

5 loop
� denote the new vertex pair as (x , y)
� let l denote the label that is picked up
� if l = k, exit loop with Nash equilibrium (x , y)
� otherwise drop l in the other polytope (Q or P)

Corollary
a nondegenerate bimatrix game has an odd number of Nash equilibria

Proof
endpoints of paths are either Nash equilibria or (0, 0)
number of endpoints is even
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Lemke-Howson Algorithm

Example
some equilibria may remain hidden to the LH algorithm:

A = B> =

3 3 0
4 0 1
0 4 5



Implementation

� the LH algorithm can be implemented algebraically by pivoting in each
step

� pivoting can be handled in a similar way as in the simplex method;
this yields a polytime algorithm for each step
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