Example 1	Summary of Last Lecture	
Game Theory	 Definition an <i>n</i>-person extensive-form game Γ^e is a labelled tree, where also edges are labelled such that each nonterminal node has player label in {0,1,,n} nodes labelled with 0 are called chance nodes 	
Georg Moser	 nodes labelled within {1,,n} are called decision nodes edges leaving chance nodes (also called alternatives) are labelled with probabilities that sum up to 1 	
Institute of Computer Science @ UIBK	3 player nodes have a second label, the information label reflecting the information state	
Winter 2008	4 each alternative at a player node has a move label 5 each terminal node is labelled with (u_1, \ldots, u_n) , the payoff	
GM (Institute of Computer Science @ UIBK) Game Theory 1/	Game Theory 48/61 Perfect Information Games	
 Ø player i, ∀ nodes x y z controlled by i ∀ alternatives b at x if y and z have the same information state and if y follows x and b ∃ node w and some alternative c at w such that z follows w and c w is controlled by player i, w has the same information label as x and a the same move label as b Recall the last assertion expresses perfect recall: whenever a player moves, she remembers all the information she knew earlier	Definition if no two nodes have the same information state, we say the game has perfect information Definition S_i is the set of information states per player <i>i</i> S_i is the set of possible moves at $s \in S_i$ D_s is the set of possible moves at $s \in S_i$ S_i the set of strategies for player <i>i</i> is $\bigotimes_{s \in S_i} D_s = \underbrace{D_s \times D_s \times \cdot \times D_s}_{ S_i \text{-times}}$	

Game Theory

Content

Content

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, Bayesian games

equilibria of strategic-form games, evolution, resistance, and risk dominance, sequential equilibria of extensive-form games, subgame-perfect equilibria, complexity of finding Nash equilibria, equilibrium computation for two-player games

refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Game Theory

Strategic-Form Games	S1/01 GM (Institute of Computer Science @ UIBK) Game Theory 52/ Strategic-Form Games
Strategic-Form Games Definition a strategic-form game is a tuple $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$ such that 1 N is the set of players 2 for each $i: C_i$ is the set of strategies of player i 3 for each $i: u_i: \bigotimes_{i \in N} C_i \to \mathbb{R}$ is the expected utility payoff a strategic-form game is finite if N and each C_i is finite Example consider the card game, suppose player 1 plans to use strategy Rp and player 2 plans to use M $u_1(Rp, M) = 2 \cdot \frac{1}{2} + -1 \cdot \frac{1}{2} = 0.5$ $u_2(Rp, M) = -2 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = -0.5$	Definition given a game Γ^e in extensive form, we define the normal representation as strategic-form game $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$: 1 $N = \{1,, n\}$, if Γ^e is an <i>n</i> -person game 2 for each <i>i</i> : C_i denotes the strategies of each player as defined above 3 we define the expected utility payoff u_i • set $C = \bigotimes_{i \in N} C_i$ • let <i>x</i> be a node in Γ^e • let $c \in C$ denote a given strategy profile • let $c \in C$ denotes the probability that the path of play goes through <i>x</i> , if <i>c</i> is chosen • let Ω^* denote the set of all terminal nodes • for $x \in \Omega^*$, $w_i(x)$ denotes the payoff for player <i>i</i> • set $u_i(c) = \sum_{x \in \Omega^*} P(x c)w_i(x)$

Strategic-Form Games	Strategic-Form Games
Example	More Examples
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Normal Representation C ₂	C ₂ C ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
CM (Institute of Computer Science & IIIDK) Come Theory 55/61	
Give institute of Computer Science @ OTBK, Game Theory 55/01	GM (Institute of Computer Science @ UIBK) Game Theory 56/61
Strategic-Form Games	GM (Institute of Computer Science @ UIBK) Game Theory 50/61 Strategic-Form Games
Strategic-Form Games	GM (Institute of Computer Science @ UBK) Game Theory 50/61 Strategic-Form Games Definition
Strategic-Form Games	$\begin{array}{c} \text{Game Theory} & \text{Game Theory} &$
Strategic-Form Games Equivalence of Strategic-Form Games Definition	GM (Institute of Computer Science @ DBK) Game Theory 50/61 Strategic-Form Games Definition • let $C_{-i} = \bigotimes_{j \in N \setminus \{i\}} C_j$ • let (e_{-i}, d_i) denote a strategy profile, such that $e_{-i} \in C_{-i}$ and $d_i \in C_i$
Strategic-Form Games Definition games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are fully equivalent if	Strategic-Form Games Definition • let $C_{-i} = \bigotimes_{j \in N \setminus \{i\}} C_j$ • let (e_{-i}, d_i) denote a strategy profile, such that $e_{-i} \in C_{-i}$ and $d_i \in C_i$ • for any set Z and any $f : Z \to \mathbb{R}$, define
Strategic-Form Games Definition games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are fully equivalent if • for all players <i>i</i> , exists numbers A_i and B_i	Strategic-Form Games Definition • let $C_{-i} = \bigotimes_{j \in N \setminus \{i\}} C_j$ • let (e_{-i}, d_i) denote a strategy profile, such that $e_{-i} \in C_{-i}$ and $d_i \in C_i$ • for any set Z and any $f: Z \to \mathbb{R}$, define $\arg\max_{y \in Z} f(y) = \{y \in Z \mid f(y) = \max_{z \in Z} f(z)\}$
Strategic-Form Games Equivalence of Strategic-Form Games Definition games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are fully equivalent if • for all players <i>i</i> , exists numbers A_i and B_i • such that $A_i > 0$	Strategic-Form Games Definition • let $C_{-i} = \bigotimes_{j \in N \setminus \{i\}} C_j$ • let (e_{-i}, d_i) denote a strategy profile, such that $e_{-i} \in C_{-i}$ and $d_i \in C_i$ • for any set Z and any $f: Z \to \mathbb{R}$, define $\operatorname{argmax}_{y \in Z} f(y) = \{y \in Z \mid f(y) = \max_{z \in Z} f(z)\}$ • let $\eta \in \Delta(C_{-i}) = \{q: C_{-i} \to \mathbb{R} \mid \sum_{i \in I \in C_{-i}} q(e_{-i}) = 1\}$
Strategic-Form Games Equivalence of Strategic-Form Games Definition games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are fully equivalent if • for all players <i>i</i> , exists numbers A_i and B_i • such that $A_i > 0$ • and $u'_i(c) = A_i u_i(c) + B_i$ for all $c \in C = \bigotimes C_i$	Strategic-Form Games Definition • let $C_{-i} = \bigotimes_{j \in N \setminus \{i\}} C_j$ • let (e_{-i}, d_i) denote a strategy profile, such that $e_{-i} \in C_{-i}$ and $d_i \in C_i$ • for any set Z and any $f: Z \to \mathbb{R}$, define $\operatorname{argmax}_{y \in Z} f(y) = \{y \in Z \mid f(y) = \max_{z \in Z} f(z)\}$ • let $\eta \in \Delta(C_{-i}) = \{q: C_{-i} \to \mathbb{R} \mid \sum_{e_{-i} \in C_{-i}} q(e_{-i}) = 1\}$
Strategic-Form Games Equivalence of Strategic-Form Games Definition games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are fully equivalent if • for all players <i>i</i> , exists numbers A_i and B_i • such that $A_i > 0$ • and $u'_i(c) = A_i u_i(c) + B_i$ for all $c \in C = \bigotimes C_i$ Example $\frac{C_1 \frac{C_2}{x_2 y_2}}{\frac{C_1}{x_1 9,9 0,8} \qquad x_1 1,1 0,0}{y_1 8,0 7,7 \qquad y_1 0,0 7,7}$	Strategic-Form Games Definition • let $C_{-i} = \bigotimes_{j \in N \setminus \{i\}} C_j$ • let (e_{-i}, d_i) denote a strategy profile, such that $e_{-i} \in C_{-i}$ and $d_i \in C_i$ • for any set Z and any $f: Z \to \mathbb{R}$, define $\operatorname{argmax}_{y \in Z} f(y) = \{y \in Z \mid f(y) = \max_{z \in Z} f(z)\}$ • let $\eta \in \Delta(C_{-i}) = \{q: C_{-i} \to \mathbb{R} \mid \sum_{e_{-i} \in C_{-i}} q(e_{-i}) = 1\}$ Definition $\operatorname{games} \Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N}) \text{ are best-response equivalence is games } f(z) = (i \in C_{-i}, i \in$

Game Theory

Strategic-Form Games

(Fully) Reduced Normal Representations

Definition

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we say d_i and e_i in C_i , are payoff equivalent if $u_j(c_{-i}, d_i) = u_j(c_{-i}, e_i)$ for all $c_{-i} \in C_{-i}, j \in N$

Definition

a randomised strategy σ_i is any probability distribution over C_i (denoted $\Delta(C_i)$); i.e., $\sigma(c_i)$ denotes the probability that *i* choses strategy c_i

Definition

a strategy d_i is randomly redundant if $\exists \sigma_i \in \Delta(C_i)$ such that $\sigma_i(d_i) = 0$ and

$$u_j(c_{-i}, d_i) = \sum_{e_i \in C_i} \sigma_i(e_i) u_j(c_{-i}, e_i) \quad \text{for all } c_{-i} \in C_{-i}, j \in N$$

rategic-Form Games

Definition

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we say d_i is strongly dominated for player *i*, if \exists randomised strategey $\sigma_i \in \Delta(C_i)$ such that

strongly dominated

residual game

$$u_i(c_{-i}, d_i) < \sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i)$$
 for all $c_{-i} \in C_{-i}$

Definition

- let $\Gamma^{(0)} = (N, (C_i)_{i \in N}, (u_i)_{i \in N}) := \Gamma$
- let $\Gamma^{(k)} = (N, (C_i^{(k)})_{i \in N}, (u_i)_{i \in N})$, such that $C_i^{(k)}$ denotes the set of all strategies in $C_i^{(k-1)}$ not strongly dominated in $\Gamma^{(k-1)}$

Game Theor

- clearly $C_i \supseteq C_i^{(1)} \supseteq C_i^{(2)} \supseteq \cdots \supseteq C_i^{(n)} = C_i^{(n+1)}$ as $C_i^{(n)}$ cannot become empty, but is finite
- define $\Gamma^{(\infty)} = \Gamma^{(n)}$
- the strategies $C_i^{(\infty)}$ are called iteratively undominated
- $\Gamma^{(\infty)}$ is the residual game

trategic-Form Games

(Institute of Computer Science @ UIB

Example

in the card game, strategy Pp is strongly dominated by $\frac{1}{2}[Rr] + \frac{1}{2}[Rp]$

Example

consider

	<i>C</i> ₂			
C_1	<i>x</i> ₂	<i>y</i> ₂	<i>z</i> ₂	
a_1	2,3	3,0	0, 1	
b_1	0,0	1, 6	4,2	

the resdiual game consists of strategy a_1 and x_2

ame Theory

61/61

59/61