UNIVERSITY OF INNSBRUCK EXAM

Institute of Computer Science 28 January 2008

Introduction to Model Checking (VO)	WS 2007/2008	LVA 703503

First name:	
Last name:	
Matriculation number:	

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Do *not* write with a pencil or a red pen. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

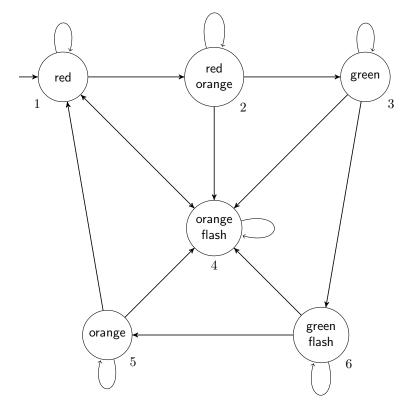
Exercise	Maximal points	Points
1(i)	12	
1(ii)	5	
2	20	
3	15	
4	18	
Σ	70	
Grade		

First name	Last name	Matriculation number	

 $\mathbf{2}$

Exercise 1 (12 + 5 points)

Consider the following transition system TS of an Austrian traffic light using the atomic propositions {red, orange, green, flash}.



Here, state 4 represents a traffic light which is out-of-order.

(i) Consider the following property.

It is never allowed to switch from a red to a non-red state if the red state is not additionally orange. (\star)

One might formulate this property as the following CTL^* -formula Φ .

$$\Phi = \neg \mathsf{red} \lor \mathsf{A} \, (\mathsf{X} \, \mathsf{red}) \, \mathsf{U} \, (\mathsf{red} \land \mathsf{orange})$$

Compute $Sat(\Phi)$ by applying the CTL*-model checking algorithm. Here, the sets $Sat(\Psi)$ should be indicated for every state-subformula Ψ of Φ . Note that the subformula red \wedge orange of Φ should be seen as a stateformula.

It is not necessary to perform the LTL-model checking explicitly, but write down the LTL-formula that is checked.

First name	Last name	Matriculation number

(ii) By the results of part (i) one can easily see that $TS \not\models \Phi$. There are two reasons for this.

- Φ does not correspond to property (*).
- Property (\star) does not take care of the possibility that the traffic light can become out-of-order.

Specify two formulas in the logic of your choice (LTL, CTL, CTL*) to fix these problems.

- One formula should exactly formalize (\star) .
- The other formula should integrate the out-of-order possibility.

First name	Last name	Matriculation number	

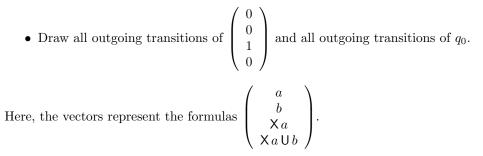
Exercise 2 (20 points)

Consider the LTL-formula $\varphi = X a \cup b$ where a and b are atomic propositions. Using the construction to generate a GNBA from φ we obtain an NBA with the following states.

$\left(\begin{array}{c}0\\0\\0\\0\end{array}\right)$	$\left(\begin{array}{c}1\\0\\0\\0\end{array}\right)$	$\left(\begin{array}{c} 0\\ 1\\ 0\\ 0\end{array}\right)$	$\left(\begin{array}{c}1\\1\\0\\0\end{array}\right)$
$\left(\begin{array}{c}0\\0\\1\\0\end{array}\right)$	$\left(\begin{array}{c}1\\0\\1\\0\end{array}\right)$	$\left(\begin{array}{c}0\\1\\1\\0\end{array}\right)$	$\left(\begin{array}{c}1\\1\\1\\0\end{array}\right)$
$\left(\begin{array}{c}0\\0\\0\\1\end{array}\right)$	$\left(\begin{array}{c}1\\0\\0\\1\end{array}\right)$	$\left(\begin{array}{c}0\\1\\0\\1\end{array}\right)$	$\left(\begin{array}{c}1\\1\\0\\1\end{array}\right)$
$\left(\begin{array}{c}0\\0\\1\\1\end{array}\right)$	$\left(\begin{array}{c}1\\0\\1\\1\end{array}\right)$	$\left(\begin{array}{c}0\\1\\1\\1\end{array}\right)$	$\left(\begin{array}{c}1\\1\\1\\1\end{array}\right)$

 q_0

• Draw a circle around every final state.



 $\mathbf{4}$

First name	Last name	Matriculation number

 $\mathbf{5}$

Exercise 3 (15 points)

Construct the channel-system for the following nanoPromela program which models a sender which sends bits to a receiver via a lossy channel. The receiver computes the sum of the bits and the number of bits transferred.

------ SENDER PROCESS -----do :: true => if :: true => b = 0 :: true => b = 1 fi ; ch ! b od
------ RECEIVER PROCESS -----atomic { sum := 0; nr := 0 };
do :: true => ch ? value; nr = nr + 1; sum = sum + value od
------ LOSSY CHANNEL PROCESS ----do :: true => ch ? dropped od

First name	Last name	Matriculation number

6

Exercise 4 (18 points)

Each correct answer is worth two points. A wrong answer withdraws one point. Marking both "Yes" and "No" is a wrong answer only and does not result in 2 - 1 = 1 points. It is not possible that the total score of this exercise is negative.

	Yes	No
The CTL formula $AFAFb$ is equivalent to the LTL formula $a \cup Fb$.		
There is an LTL formula which is equivalent to $\neg E a U X b$.		
The size of the transition system of a program graph is polynomial in the number of locations of the program graph.		
There exists a transition system, a state s , and a CTL*-state-formula Φ such that neither $s \models \Phi$ nor $s \models \neg \Phi$.		
Assume $P \neq NP$. The Hamiltonian Path Problem can be encoded in polynomial time as a CTL model checking problem.		
There exists an NBA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) \neq \mathcal{L}(\varphi)$ for every every LTL formula φ .		
Let channel c use hand-shaking. Then no state with an empty channel c can perform a transition which involves receiving a value along c .		
To be more precise, there is no state $\langle \ell_1, \ldots, \ell_i, \ldots, \ell_n, \eta, \xi \rangle$ where $\ell_i \xrightarrow{c?x} \ell'_i$ is a transition in the program graph and where $\xi(c) = \varepsilon$ such that a transition to a state of the form $\langle \ell'_1, \ldots, \ell'_i, \ldots, \ell'_n, \eta', \xi' \rangle$ with $\ell_i \neq \ell'_i$ is possible.		
Given a DBA \mathcal{A}_1 and a GNBA \mathcal{A}_2 , then $\overline{\mathcal{L}(\mathcal{A}_1)} \setminus \mathcal{L}(\mathcal{A}_2)$ is recognizable by an NBA.		
There is an NFA \mathcal{A}_1 and a GNBA \mathcal{A}_2 such that $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$.		