T . 1 35 11	C1 11 (TTC)	TITO 200 - /2000	TTIL =00F00
Introduction to Model	Checking (VO)	WS 2007/2008	LVA 703503

First name:	
Last name:	
Matriculation number:	

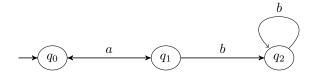
- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Do *not* write with a pencil or a red pen. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	17	
2	14	
3	17	
4	12	
Σ	60	
Grade		

First name	Last name	Matriculation number

Exercise 1 (15 + 2 points)

Consider the GNBA $\mathcal{A} = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, F_1, F_2, F_3)$ where $F_1 = \{q_0, q_1\}, F_2 = \{q_1, q_2\},$ and $F_3 = \{q_0, q_2\},$ and where δ is represented graphically.

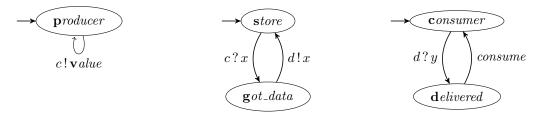


• Construct the corresponding equivalent NBA.

First name	Last name	Matriculation number

Exercise 2 (14 points)

Consider the following channel system which transmits values from a producer via a store to a consumer.



We assume that the capacity of channel c is 1 and the capacity of channel d is 0. To construct the transition system for this channel system we will encounter states of the form

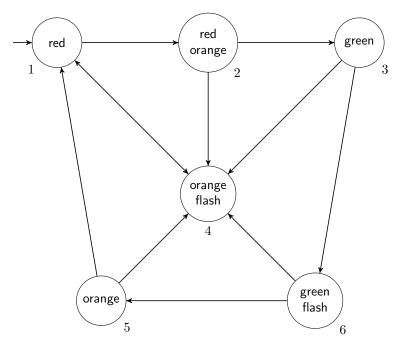
$$(\ell_1, \ell_2, \ell_3, Eval(c), Eval(d))$$

where we ignore the evaluation of variables since there is only one possible value. Here, ℓ_1 , ℓ_2 , and ℓ_3 are (the first letters of) the locations, i.e., $\ell_1 \in \{\mathbf{p}\}$, $\ell_2 \in \{\mathbf{s}, \mathbf{g}\}$, and $\ell_3 \in \{\mathbf{c}, \mathbf{d}\}$. Of course, **v**alue can be abbreviated by **v**. Some initial part of the transition system is already depicted below. Draw the remaining parts.

First name	Last name	Matriculation number

Exercise 3 (2 + 15 points)

Consider the following transition system TS of an Austrian traffic light using the atomic propositions {red, orange, green, flash}.



Consider the following CTL*-formula Φ .

$$\Phi = \mathsf{A}\,\mathsf{G}\,(\neg\mathsf{red}\vee\mathsf{E}\,(\mathsf{orange}\,\mathsf{U}\,\mathsf{X}\,\mathsf{red}))$$

Perform CTL*-model checking to decide whether the transition systems satisfies Φ .

(i) Compute a formula Φ' which is equivalent to Φ and does not contain E.

(ii) Compute $Sat(\Psi)$ for every state-subformula Ψ of Φ' . Note that the subformula $\neg \mathsf{red} \vee \ldots$ of Φ' should be seen as a state-formula.

When computing a set $Sat(A\varphi)$ write down the corresponding LTL-formula φ' that is checked. However, it is not necessary to perform the LTL-model checking explicitly.

4

First name	Last name	Matriculation number

First name	Last name	Matriculation number

6

Exercise 4 (6 + 6 points)

Consider the LTL formula

$$\varphi = a \cup (X (b \wedge (c \cup X b)) \cup c)$$

The GNBA \mathcal{A}_{φ} is of the form $(\mathcal{Q}, 2^3, q_0, \delta, F_1, F_2, F_3)$.

(i) The set of states Q is $2^m \cup \{q_0\}$. Determine m by specifying which subformula corresponds to which bit d_i in the state $(d_1, \ldots, d_m)^T$.

(ii) Suppose F_1 corresponds to the left U of φ , F_2 to the middle U of φ , and F_3 corresponds to the right U of φ . Complete the definitions of F_1 , F_2 , and F_3 .

$$F_1 = \{ (d_1, \dots, d_m)^T \mid \}$$

$$F_2 = \{ (d_1, \dots, d_m)^T \mid \}$$

$$F_3 = \{ (d_1, \dots, d_m)^T \mid \}$$