UNIVERSITY OF INNSBRUCK 3rd Exam

Institute of Computer Science 24 April 2008

Introduction to Model	Checking (VO)	WS 2007/2008	LVA 703503

First name:	
Last name:	
Matriculation number:	

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Do *not* write with a pencil or a red pen. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	12	
2	24	
3	15	
4	19	
Σ	70	
Grade		

First name	Last name	Matriculation number

 $\mathbf{2}$

Exercise 1 (12 points)

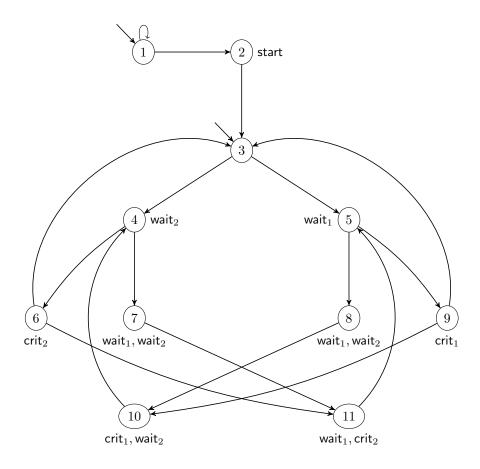
Each correct answer is worth four points. A wrong answer results in zero points. Giving no answer is worth one point.

	Yes	No
The CTL formula $(AGAF request) \Rightarrow (AGAF response)$ is equivalent to the LTL formula $(GF request) \Rightarrow (GF response)$.		
Every language $L \subseteq \Sigma^{\omega}$ can be recognized by some NBA.		
Emptiness of $\mathcal{L}(\mathcal{A})$ for some GNBA \mathcal{A} can directly be decided using an SCC-based analysis, without first translating \mathcal{A} into some NBA.		

Exercise 2 (21 + 3 points)

Consider the following nanoPromela program which has two clients $(i \in \{1, 2\})$ which send their data via a scheduler to a printer. After a clients data d_i is delivered at the printer, client *i* gets an acknowledgement.

• Construct the channel-system for the nanoPromela program.


First name	Last name	Matriculation number

• Does the program contain a serious bug using asynchronous communication? If so, shortly describe it.

3

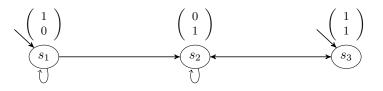
First name	Last name	Matriculation number

Exercise 3 (15 points)

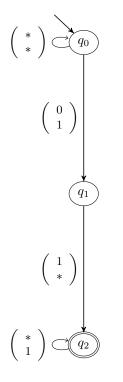
Consider the above transition system TS of a mutual exclusion protocol and the following CTL^* -formula Φ .

 $\Phi = (\mathsf{A}\left((\mathsf{F}\,\mathsf{G}\,\neg\mathsf{start}) \land \mathsf{A}\left(\neg\mathsf{wait}_1 \lor \mathsf{F}\,\mathsf{crit}_1\right)\right)) \land \mathsf{A}\,\mathsf{F}\left(\mathsf{crit}_1 \lor \mathsf{crit}_2\right)$

Does $TS \models \Phi$ hold? Justify your answer by performing CTL^* -model checking, and write down $Sat(\Psi)$ for every state-subformula Ψ of Φ . Whenever one computes a set $Sat(A \varphi)$, additionally write down the corresponding LTL-formula φ' that is checked. However, it is not necessary to perform LTL-model checking explicitly.


First name	Last name	Matriculation number

 $\mathbf{5}$


First name	Last name	Matriculation number

Exercise 4 (18 + 1 points)

Consider the following NBA \mathcal{A} and the following transition system TS.

6

- Construct the NBA $\mathcal{B} = TS \otimes \mathcal{A}$ which accepts $\mathcal{L}(TS) \cap \mathcal{L}(\mathcal{A})$.
- Is $\mathcal{L}(\mathcal{B}) = \emptyset$? If not, then provide a word which is contained in $\mathcal{L}(\mathcal{B})$.