UNIVERSITY OF INNSBRUCK EXAM

Institute of Computer Science 28 January 2008

Introduction to Model Checking (VO)	WS 2007/2008	LVA 703503

First name:	
Last name:	
Matriculation number:	

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Do *not* write with a pencil or a red pen. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

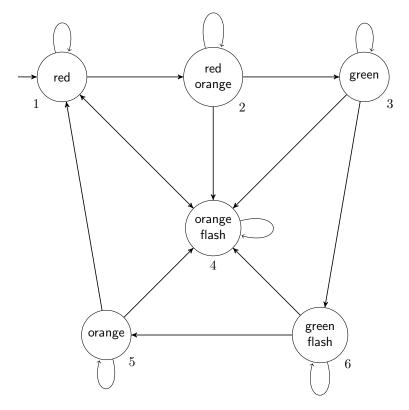
Exercise	Maximal points	Points
1(i)	12	
1(ii)	5	
2	20	
3	15	
4	18	
Σ	70	
Grade		

First name	Last name	Matriculation number

 $\mathbf{2}$

Exercise 1 (12 + 5 points)

Consider the following transition system TS of an Austrian traffic light using the atomic propositions {red, orange, green, flash}.



Here, state 4 represents a traffic light which is out-of-order.

(i) Consider the following property.

It is never allowed to switch from a red to a non-red state if the red state is not additionally orange. (\star)

One might formulate this property as the following CTL^* -formula Φ .

$$\Phi = \neg \mathsf{red} \lor \mathsf{A}(\mathsf{X} \mathsf{red}) \mathsf{U}(\mathsf{red} \land \mathsf{orange})$$

Compute $Sat(\Phi)$ by applying the CTL*-model checking algorithm. Here, the sets $Sat(\Psi)$ should be indicated for every state-subformula Ψ of Φ . Note that the subformula red \wedge orange of Φ should be seen as a stateformula.

It is not necessary to perform the LTL-model checking explicitly, but write down the LTL-formula that is checked.

- $Sat(red) = \{1, 2\}$
- $Sat(\neg red) = \{3, 4, 5, 6\}$
- $Sat(orange) = \{2, 4, 5\}$
- $Sat(red \land orange) = \{2\}$

First name	Last name	Matriculation number]
			3

- Sat(A (X red) U (red ∧ orange) = {2} (This steps involves LTL model checking of the formula X red U a where a is a new atomic proposition representing the state-formula red ∧ orange. Hence, only state 2 is labeled with a.)
- $Sat(\Phi) = \{2, 3, 4, 5, 6\}$

(ii) By the results of part (i) one can easily see that $TS \not\models \Phi$. There are two reasons for this.

- Φ does not correspond to property (*).
- Property (\star) does not take care of the possibility that the traffic light can become out-of-order.

Specify two formulas in the logic of your choice (LTL, CTL, CTL^{*}) to fix these problems.

- One formula should exactly formalize (\star) .
- The other formula should integrate the out-of-order possibility.
- (\star) can be encoded in LTL as follows:

$$\mathsf{G}\left((\mathsf{red} \land \mathsf{X} \neg \mathsf{red}\right) \Rightarrow \mathsf{orange}\right)$$

• Taking care of out-of-order can be done as follows:

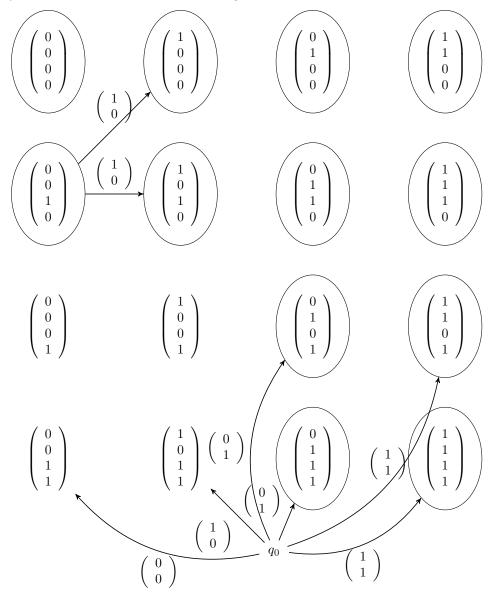
 $\mathsf{G}\left((\mathsf{red} \land \mathsf{X} \, \neg \mathsf{red}\right) \Rightarrow (\mathsf{orange} \lor \mathsf{X}\left(\mathsf{orange} \land \mathsf{flash}\right)))$

First name	Last name	Matriculation number	

 $\mathbf{4}$

Exercise 2 (20 points)

Consider the LTL-formula $\varphi = X a \cup b$ where a and b are atomic propositions. Using the construction to generate a GNBA from φ we obtain an NBA with the following states.



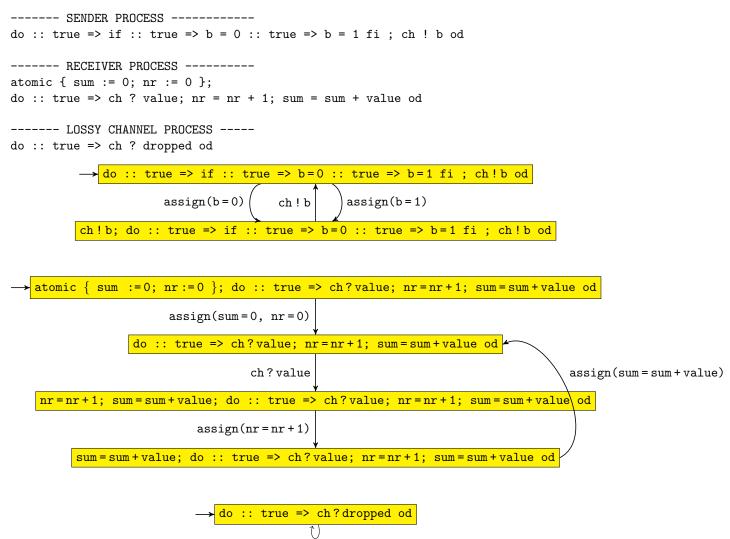
- Draw a circle around every final state.
- Draw all outgoing transitions of $\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$ and all outgoing transitions of q_0 . Here, the vectors represent the formulas $\begin{pmatrix} a\\b\\Xa\\XaUb \end{pmatrix}$.

First name	Last name	Matriculation number

 $\mathbf{5}$

Exercise 3 (15 points)

Construct the channel-system for the following nanoPromela program which models a sender which sends bits to a receiver via a lossy channel. The receiver computes the sum of the bits and the number of bits transferred.



First name	Last name	Matriculation number

Exercise 4 (18 points)

Each correct answer is worth two points. A wrong answer withdraws one point. Marking both "Yes" and "No" is a wrong answer only and does not result in 2 - 1 = 1 points. It is not possible that the total score of this exercise is negative.

	Yes	No
The CTL formula $AFAFb$ is equivalent to the LTL formula $a \cup Fb$. ($AFAFb \equiv AFb \equiv Fb \equiv a \cup Fb$)	\checkmark	
There is an LTL formula which is equivalent to $\neg E a U X b$. $(\neg E a U X b \equiv \neg \neg A \neg (a U X b) \equiv A \neg (a U X b) \equiv \neg (a U X b))$	\checkmark	
The size of the transition system of a program graph is polynomial in the number of locations of the program graph. (Yes, since the states of $TS(PG)$ are $Loc \times Eval(Var)$.)	√	
There exists a transition system, a state s , and a CTL*-state-formula Φ such that neither $s \models \Phi$ nor $s \models \neg \Phi$. (No, see definition of CTL*-semantic: $s \not\models \Phi$ implies $s \models \neg \Phi$.)		✓
Assume $P \neq NP$. The Hamiltonian Path Problem can be encoded in polynomial time as a CTL model checking problem. (No. If a polynomial time encoding would exist, then one can solve HPP in polynomial time, since CTL model checking can be done in polynomial time. This is a contradiction to HPP being NP-complete.)		\checkmark
There exists an NBA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) \neq \mathcal{L}(\varphi)$ for every every LTL formula φ . (Yes, e.g. the NBA on slide 8 of lecture 10.)	\checkmark	
Let channel c use hand-shaking. Then no state with an empty channel c can perform a transition which involves receiving a value along c . To be more precise, there is no state $\langle \ell_1, \ldots, \ell_i, \ldots, \ell_n, \eta, \xi \rangle$ where $\ell_i \xrightarrow{c?x}_i \ell'_i$ is a transition in the program graph and where $\xi(c) = \varepsilon$ such that a transition to a state of the form $\langle \ell'_1, \ldots, \ell'_i, \ldots, \ell'_n, \eta', \xi' \rangle$ with $\ell_i \neq \ell'_i$ is possible. (Since for handshaking the channels are always empty, of course a receiving process can be executed if there is a suitable second process which sends along c .)		V
Given a DBA \mathcal{A}_1 and a GNBA \mathcal{A}_2 , then $\overline{\mathcal{L}(\mathcal{A}_1)} \setminus \mathcal{L}(\mathcal{A}_2)$ is recognizable by an NBA. (DBAs and GNBAs can be transformed into NBAs. Since NBAs are closed under all Boolean operations, one can construct such an automaton.)	V	
There is an NFA \mathcal{A}_1 and a GNBA \mathcal{A}_2 such that $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$. (Choose NFA and GNBA which accept the empty language.)	\checkmark	

6