First name:

Last name:

\qquad

Matriculation number: \qquad

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Do not write with a pencil or a red pen. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	17	
2	14	
3	17	
4	12	
Σ	60	
Grade		

First name	Last name	Matriculation number
$\mathbf{2}$		

Exercise $1(15+2$ points)

Consider the GNBA $\mathcal{A}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, q_{0}, \delta, F_{1}, F_{2}, F_{3}\right)$ where $F_{1}=\left\{q_{0}, q_{1}\right\}, F_{2}=\left\{q_{1}, q_{2}\right\}$, and $F_{3}=$ $\left\{q_{0}, q_{2}\right\}$, and where δ is represented graphically.

- Construct the corresponding equivalent NBA.

Here, the yellow states mark the final states.

- Is $\mathcal{L}(\mathcal{A})=\varnothing$? If not, then provide a word which is contained in $\mathcal{L}(\mathcal{A})$.
$\mathcal{L}(\mathcal{A})=\{$ a a a $a \ldots \ldots\}$.

First name	Last name	Matriculation number

Exercise 2 (14 points)

Consider the following channel system which transmits values from a producer via a store to a consumer.

We assume that the capacity of channel c is 1 and the capacity of channel d is 0 . To construct the transition system for this channel system we will encounter states of the form

$$
\left(\ell_{1}, \ell_{2}, \ell_{3}, \operatorname{Eval}(c), \operatorname{Eval}(d)\right)
$$

where we ignore the evaluation of variables since there is only one possible value. Here, ℓ_{1}, ℓ_{2}, and ℓ_{3} are (the first letters of) the locations, i.e., $\ell_{1} \in\{\mathbf{p}\}, \ell_{2} \in\{\mathbf{s}, \mathbf{g}\}$, and $\ell_{3} \in\{\mathbf{c}, \mathbf{d}\}$. Of course, \mathbf{v} alue can be abbreviated by v. Some initial part of the transition system is already depicted below. Draw the remaining parts.

First name	Last name	Matriculation number

Exercise 3 ($2+15$ points)

Consider the following transition system $T S$ of an Austrian traffic light using the atomic propositions \{red, orange, green, flash\}.

Consider the following CTL*-formula Φ.

$$
\Phi=\text { A G (} \neg \text { red } \vee \mathrm{E}(\text { orange U X red }))
$$

Perform CTL*-model checking to decide whether the transition systems satisfies Φ.
(i) Compute a formula Φ^{\prime} which is equivalent to Φ and does not contain E .

$$
\Phi^{\prime}=\mathrm{A} G(\neg \text { red } \vee \neg \mathrm{A} \neg(\text { orange } U \mathrm{X} \text { red }))
$$

(ii) Compute $\operatorname{Sat}(\Psi)$ for every state-subformula Ψ of Φ^{\prime}. Note that the subformula \neg red $\vee \ldots$ of Φ^{\prime} should be seen as a state-formula.
When computing a set $\operatorname{Sat}(\mathrm{A} \varphi)$ write down the corresponding LTL-formula φ^{\prime} that is checked. However, it is not necessary to perform the LTL-model checking explicitly.

- $\operatorname{Sat}($ red $)=\{1,2\}$
- $\operatorname{Sat}(\neg$ red $)=\{3,4,5,6\}$
- $\operatorname{Sat}($ orange $)=\{2,4,5\}$
- $\operatorname{Sat}(\mathrm{A} \neg($ orange $\mathrm{U} \times$ red $))=\{3,6\}$ (This step involves LTL model checking of the formula \neg (orange U X red).)
- $\operatorname{Sat}(\neg \mathrm{A} \neg($ orange UX red $))=\{1,2,4,5\}$
- Sat $(\neg$ red $\vee \neg \mathrm{A} \neg($ orange UX red $))=\{1,2,3,4,5,6\}$

First name	Last name	Matriculation number

- $\operatorname{Sat}\left(\Phi^{\prime}\right)=\{1,2,3,4,5,6\}$ (This step involves LTL model checking of the formula G a where a is a new atomic proposition representing the state-formula \neg red $V \neg A \neg$ (orange $U X$ red). Hence, all states are labeled with a.)

First name	Last name	Matriculation number

Exercise $4(6+6$ points $)$

Consider the LTL formula

$$
\varphi=a \cup(\mathrm{X}(b \wedge(c \cup \mathrm{X} b)) \cup c)
$$

The GNBA \mathcal{A}_{φ} is of the form $\left(\mathcal{Q}, 2^{3}, q_{0}, \delta, F_{1}, F_{2}, F_{3}\right)$.
(i) The set of states \mathcal{Q} is $2^{m} \cup\left\{q_{0}\right\}$. Determine m by specifying which subformula corresponds to which bit d_{i} in the state $\left(d_{1}, \ldots, d_{m}\right)^{T}$.

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4} \\
d_{5} \\
d_{6} \\
d_{7} \\
d_{8} \\
d_{9}
\end{array}\right) \sim\left(\begin{array}{c}
a \\
b \\
c \\
\times b \\
c \cup \times b \\
b \wedge(c \cup \times \mathrm{X} b) \\
\mathrm{X}(b \wedge(c \cup \times b)) \\
\mathrm{X}(b \wedge(c \cup \mathrm{X} b)) \cup c \\
\varphi
\end{array}\right)
$$

Hence, $m=9$.
(ii) Suppose F_{1} corresponds to the left U of φ, F_{2} to the middle U of φ, and F_{3} corresponds to the right U of φ. Complete the definitions of F_{1}, F_{2}, and F_{3}.

$$
F_{1}=\left\{\left(d_{1}, \ldots, d_{m}\right)^{T} \mid d_{9}=0 \vee d_{8}=1\right\}
$$

$$
F_{2}=\left\{\left(d_{1}, \ldots, d_{m}\right)^{T} \mid d_{5}=0 \vee d_{4}=1\right\}
$$

$$
F_{3}=\left\{\left(d_{1}, \ldots, d_{m}\right)^{T} \mid d_{8}=0 \vee d_{3}=1\right\}
$$

