4 Selected Solutions

• Exercise 7.25 a)

Solution. By definition we have $FIN = \{x \mid W_x \text{ is finite}\}$ and

 $\mathsf{COF} = \{x \mid W_x \text{ is co-infinite}\} = \{x \mid \sim W_x \text{ is infinite}\}.$

In order to show $FIN \leq_m COF$ we define a total recursive function f such that $x \in FIN$ if and only if $f(x) \in COF$.

To describe the function f, we fix a recursive function φ_x and then define based on φ_x a recursive function φ_y such that f(x) = y. The construction will be such that we can read off the definition of f and verify that f is total recursive.

It clarifies the argument if we work with Turing machines instead of recursive functions directly. We assume that TM M computes φ_x and define TM N that computes φ_y . Thus it suffices to describe N in term of M such that the description of N is obtained from M in an effective way. We suppose M, N are defined over the alphabet $\Sigma = \{0, 1\}$ tacitly assuming the strings over Σ represent binary encodings of natural numbers.

We describe N: On input y, N generates all strings x, z such that |x| > |y|, |z| > |y| and simulates M on x for at most |z| steps. This is done in a timeshared manner such that eventually all computations M(x) are simulated. N accepts its input y, if M ever accepts x (in at most |z| steps). Then L(M) is finite implies that L(N) is finite, too. On the other hand if L(M) is infinite, then $L(N) = \Sigma^*$. From this it is easy to see, that $x \in \mathsf{FIN}$ if and only $y \in \mathsf{COF}$.

It remains to verify that there exists a recursive function f such that f(x) = y. To see this, observe that x is nothing else then the code of M, where N calls M as a subroutine. Then the code of N is essentially given as the code of the above loop plus the code of M, x. It is easy to see that this process can be represented by a recursive function. \Box

• Exercise 7.25 b)

Solution. By definition we have $\mathsf{INF} = \{x \mid W_x \text{ is infinite}\}\$ and we have to show $\mathsf{INF} \leq_{\mathsf{m}} \mathsf{COF}$. For that we employ computation histories. Recall that a string represents a computation history of a given TM M if it satisfies the following properties:

- 1. The string encodes a sequence of configurations of M.
- 2. The first configuration is the start configuration on some input.
- 3. The last configuration is an accepting configuration.
- 4. The $i + 1^{\text{th}}$ configuration follows from the i^{th} configuration in accordance with the rules of M.

Let M be a TM, then we aim to construct a TM N such that if L(M) is infinite, then $\sim L(N)$ will be infinite and otherwise if L(M) is finite, then $\sim L(N)$ will be finite. If this has been achieved then we can define a recursive function f from this construction (as in Exercise 7.25.a) such that $x \in \mathsf{INF}$ if and only if $f(x) \in \mathsf{COF}$.

We define N to accept all strings that are not computation histories of M. The simplest way to do so is to extend the alphabet Σ such that the encoding can be done with the new symbols. Then we only need to check whether one of the above given properties fails to hold. In which case N will accept, otherwise reject.

• Exercise 7.25 c)

Solution. Let $\mathsf{TOT} = \{x \mid \varphi_x \text{ is total}\}\)$, we have to show $\mathsf{TOT} \leq_{\mathsf{m}} \mathsf{COF}$. The reduction makes use of an auxiliary TM K, defined as follows.

On input y. K generates all strings x (over Σ) such that $|x| \leq |y|$. Then K simulates M on x (in a timeshared way so that all x generated are eventually tested). If M halts on all x, then K accepts y. Notice, that if L(M) is total, then M halts for all x. Hence for all input y to K, K will accept its input. Hence $L(K) = \Sigma^*$. Otherwise, if there exists x such that M loops on x. then K will reject all y with $|y| \geq |x|$. In particular L(K) is finite.

Now, to define the sought TM N, we construct a TM that accepts all strings that are not configuration histories of K (employing ideas from Exercise 7.25 b). I.e., $\sim L(N)$ is infinite if L(M) is total and $\sim L(N)$ is finite if L(M) is not total. It is easy to see how to prove $\mathsf{TOT} \leq_{\mathsf{m}} \mathsf{COF}$ from this.

• Exercise 7.25 d)

Solution. Let $\mathsf{REC} = \{x \mid W_x \text{ is recursive}\}$. According to the exercise we ought to prove $\mathsf{COF} \leq_{\mathsf{m}} \mathsf{REC}$. However this would contradict the fact that the arithmetical hierarchy doesn't collapse.

To see this, observe that COF can be represented as follows:

$$\mathsf{COF} = \{ M \mid \mathsf{L}(M) \text{ is co-infinite} \}$$
$$= \{ M \mid \forall n \exists x \forall t \ (|x| > n \land M \text{ doesn't accept } x \text{ in } t \text{ steps}) \}$$

Clearly the assertion that "*M* doesn't accept *x* in *t* steps" is representable as recursive formula. We can even prove that this formula is primitive recursive. Hence the set COF represents a Π_3 -formula. Moreover it is not difficult to proof that COF is complete for Π_3 with respect to \leq_m . On the other hand we have the following characterisation of REC:

 $\mathsf{REC} = \{ M \mid \mathsf{L}(M) \text{ is recursive} \}$ $= \{ M \mid \exists N \forall x \forall t_1 \exists t_1 \exists t_2 \ (M \text{ accepts } x \text{ in } t_1 \text{ steps} \to N \text{ accepts } x \text{ in } t_2 \text{ steps}) \} .$

From this it is not difficult to see that $\mathsf{REC} \in \Sigma_3$. If we would indeed by able to reduce prove $\mathsf{COF} \leq_{\mathsf{m}} \mathsf{REC}$, then we would reduce *all* Π_3 -formula to a Σ_3 -formulas. Hence the arithmetical hierarchy collapses at level 3 which is not the case.