4 Selected Solutions

e Exercise 7.25 a)

Solution. By definition we have FIN = {z | W, is finite} and
COF = {z | W, is co-infinite} = {z | ~W,, is infinite} .

In order to show FIN <,, COF we define a total recursive function f such that z € FIN if
and only if f(x) € COF.

To describe the function f, we fix a recursive function ¢, and then define based on ¢, a
recursive function ¢, such that f(z) = y. The construction will be such that we can read
off the definition of f and verify that f is total recursive.

It clarifies the argument if we work with Turing machines instead of recursive functions
directly. We assume that TM M computes ¢, and define TM N that computes ¢,. Thus
it suffices to describe N in term of M such that the description of IV is obtained from M
in an effective way. We suppose M, N are defined over the alphabet ¥ = {0,1} tacitly
assuming the strings over ¥ represent binary encodings of natural numbers.

We describe N: On input y, N generates all strings x, z such that |z| > |y, |z| > |y| and
simulates M on x for at most |z| steps. This is done in a timeshared manner such that
eventually all computations M (x) are simulated. N accepts its input y, if M ever accepts
x (in at most |z| steps). Then L(M) is finite implies that L(V) is finite, too. On the other
hand if L(M) is infinite, then L(N) = £*. From this it is easy to see, that = € FIN if and
only y € COF.

It remains to verify that there exists a recursive function f such that f(z) = y. To see
this, observe that x is nothing else then the code of M, where N calls M as a subroutine.
Then the code of N is essentially given as the code of the above loop plus the code of M,
x. It is easy to see that this process can be represented by a recursive function. O

e Exercise 7.25 b)

Solution. By definition we have INF = {z | W, is infinite} and we have to show INF <,
COF. For that we employ computation histories. Recall that a string represents a compu-
tation history of a given TM M if it satisfies the following properties:

1. The string encodes a sequence of configurations of M.

2. The first configuration is the start configuration on some input.

3. The last configuration is an accepting configuration.

4. The i+ 1*® configuration follows from the i*" configuration in accordance with the
rules of M.

Let M be a TM, then we aim to construct a TM N such that if L(M) is infinite, then
~L(N) will be infinite and otherwise if L(M) is finite, then ~ L(N) will be finite. If this
has been achieved then we can define a recursive function f from this construction (as in
Exercise 7.25.a) such that = € INF if and only if f(z) € COF.

We define N to accept all strings that are not computation histories of M. The simplest
way to do so is to extend the alphabet ¥ such that the encoding can be done with the new
symbols. Then we only need to check whether one of the above given properties fails to
hold. In which case N will accept, otherwise reject. O

e Exercise 7.25 ¢)

Solution. Let TOT = {x | ¢, is total}, we have to show TOT <, COF. The reduction
makes use of an auxiliary TM K, defined as follows.

On input y. K generates all strings x (over X) such that |z| < |y|. Then K simulates M
on z (in a timeshared way so that all = generated are eventually tested). If M halts on all
x, then K accepts y. Notice, that if L(M) is total, then M halts for all . Hence for all
input y to K, K will accept its input. Hence L(K) = ¥*. Otherwise, if there exists « such
that M loops on x. then K will reject all y with |y| > |x|. In particular L(K) is finite.

Now, to define the sought TM N, we construct a TM that accepts all strings that are not
configuration histories of K (employing ideas from Exercise 7.25 b). L.e., ~L(N) is infinite
if L(M) is total and ~ L(N) is finite if L(M) is not total. It is easy to see how to prove
TOT <, COF from this. O

e Exercise 7.25 d)

Solution. Let REC = {x | W, is recursive}. According to the exercise we ought to prove
COF <, REC. However this would contradict the fact that the arithmetical hierarchy
doesn’t collapse.

To see this, observe that COF can be represented as follows:

COF = {M | L(M) is co-infinite}
= {M | VnIxVt (|x| > n A M doesn’t accept x in t steps)} .

Clearly the assertion that “M doesn’t accept x in ¢ steps’ is representable as recursive
formula. We can even prove that this formula is primitive recursive. Hence the set COF
represents a IT3-formula. Moreover it is not difficult to proof that COF is complete for I3
with respect to <. On the other hand we have the following characterisation of REC:

REC = {M | L(M) is recursive}
= {M | INVzVt,3t13ts (M accepts x in ¢ steps — N accepts x in ty steps)} .
From this it is not difficult to see that REC € ¥5. If we would indeed by able to reduce

prove COF <, REC, then we would reduce all TIs-formula to a Xs-formulas. Hence the
arithmetical hierarchy collapses at level 3 which is not the case. O

