4 Selected Solutions

- Exercise 7.25 a)

Solution. By definition we have FIN $=\left\{x \mid W_{x}\right.$ is finite $\}$ and

$$
\text { COF }=\left\{x \mid W_{x} \text { is co-infinite }\right\}=\left\{x \mid \sim W_{x} \text { is infinite }\right\} .
$$

In order to show FIN $\leqslant m$ COF we define a total recursive function f such that $x \in$ FIN if and only if $f(x) \in$ COF.

To describe the function f, we fix a recursive function φ_{x} and then define based on φ_{x} a recursive function φ_{y} such that $f(x)=y$. The construction will be such that we can read off the definition of f and verify that f is total recursive.

It clarifies the argument if we work with Turing machines instead of recursive functions directly. We assume that TM M computes φ_{x} and define TM N that computes φ_{y}. Thus it suffices to describe N in term of M such that the description of N is obtained from M in an effective way. We suppose M, N are defined over the alphabet $\Sigma=\{0,1\}$ tacitly assuming the strings over Σ represent binary encodings of natural numbers.
We describe N : On input y, N generates all strings x, z such that $|x|>|y|,|z|>|y|$ and simulates M on x for at most $|z|$ steps. This is done in a timeshared manner such that eventually all computations $M(x)$ are simulated. N accepts its input y, if M ever accepts x (in at most $|z|$ steps). Then $\mathrm{L}(M)$ is finite implies that $\mathrm{L}(N)$ is finite, too. On the other hand if $\mathrm{L}(M)$ is infinite, then $\mathrm{L}(N)=\Sigma^{*}$. From this it is easy to see, that $x \in$ FIN if and only $y \in$ COF.
It remains to verify that there exists a recursive function f such that $f(x)=y$. To see this, observe that x is nothing else then the code of M, where N calls M as a subroutine. Then the code of N is essentially given as the code of the above loop plus the code of M, x. It is easy to see that this process can be represented by a recursive function.

- Exercise 7.25 b)

Solution. By definition we have INF $=\left\{x \mid W_{x}\right.$ is infinite $\}$ and we have to show INF \leqslant_{m} COF. For that we employ computation histories. Recall that a string represents a computation history of a given TM M if it satisfies the following properties:

1. The string encodes a sequence of configurations of M.
2. The first configuration is the start configuration on some input.
3. The last configuration is an accepting configuration.
4. The $i+1^{\text {th }}$ configuration follows from the $i^{\text {th }}$ configuration in accordance with the rules of M.
Let M be a TM, then we aim to construct a TM N such that if $\mathrm{L}(M)$ is infinite, then $\sim \mathrm{L}(N)$ will be infinite and otherwise if $\mathrm{L}(M)$ is finite, then $\sim \mathrm{L}(N)$ will be finite. If this has been achieved then we can define a recursive function f from this construction (as in Exercise 7.25.a) such that $x \in$ INF if and only if $f(x) \in$ COF.
We define N to accept all strings that are not computation histories of M. The simplest way to do so is to extend the alphabet Σ such that the encoding can be done with the new symbols. Then we only need to check whether one of the above given properties fails to hold. In which case N will accept, otherwise reject.

- Exercise 7.25 c$)$

Solution. Let TOT $=\left\{x \mid \varphi_{x}\right.$ is total $\}$, we have to show TOT \leqslant_{m} COF. The reduction makes use of an auxiliary TM K, defined as follows.
On input y. K generates all strings x (over Σ) such that $|x| \leqslant|y|$. Then K simulates M on x (in a timeshared way so that all x generated are eventually tested). If M halts on all x, then K accepts y. Notice, that if $\mathrm{L}(M)$ is total, then M halts for all x. Hence for all input y to K, K will accept its input. Hence $\mathrm{L}(K)=\Sigma^{*}$. Otherwise, if there exists x such that M loops on x. then K will reject all y with $|y| \geqslant|x|$. In particular $\mathrm{L}(K)$ is finite.
Now, to define the sought TM N, we construct a TM that accepts all strings that are not configuration histories of K (employing ideas from Exercise 7.25 b). I.e., $\sim \mathrm{L}(N)$ is infinite if $\mathrm{L}(M)$ is total and $\sim \mathrm{L}(N)$ is finite if $\mathrm{L}(M)$ is not total. It is easy to see how to prove TOT $\leqslant{ }_{m}$ COF from this.

- Exercise 7.25 d)

Solution. Let REC $=\left\{x \mid W_{x}\right.$ is recursive $\}$. According to the exercise we ought to prove COF \leqslant_{m} REC. However this would contradict the fact that the arithmetical hierarchy doesn't collapse.
To see this, observe that COF can be represented as follows:

$$
\begin{aligned}
\text { COF } & =\{M \mid \mathrm{L}(M) \text { is co-infinite }\} \\
& =\{M \mid \forall n \exists x \forall t(|x|>n \wedge M \text { doesn't accept } x \text { in } t \text { steps })\} .
\end{aligned}
$$

Clearly the assertion that " M doesn't accept x in t steps" is representable as recursive formula. We can even prove that this formula is primitive recursive. Hence the set COF represents a Π_{3}-formula. Moreover it is not difficult to proof that COF is complete for Π_{3} with respect to \leqslant_{m}. On the other hand we have the following characterisation of REC:

$$
\begin{aligned}
\mathrm{REC} & =\{M \mid \mathrm{L}(M) \text { is recursive }\} \\
& =\left\{M \mid \exists N \forall x \forall t_{1} \exists t_{1} \exists t_{2}\left(M \text { accepts } x \text { in } t_{1} \text { steps } \rightarrow N \text { accepts } x \text { in } t_{2} \text { steps }\right)\right\} .
\end{aligned}
$$

From this it is not difficult to see that $\operatorname{REC} \in \Sigma_{3}$. If we would indeed by able to reduce prove COF \leqslant_{m} REC, then we would reduce all Π_{3}-formula to a Σ_{3}-formulas. Hence the arithmetical hierarchy collapses at level 3 which is not the case.

