		Organisation					
	gic	Schedule					
		Time and	Place				
		Time and	T lace				
		Thurs	day, 8:15–9:45, H	IS E			
	Logic (master program)						
	J (1 J)	week 1	October 2	week 8	November 20]	
		week 2	October 9	week 9	November 27	(LPAR'08)	
	Georg Moser	week 3	October 16	week 10	December 4		
		week 4	October 23	week 11	December 11	(FSTTCS'08)	
1675451GILL		week 5	October 30	week 12	January 8		
Cum mar 1 7	Institute of Computer Science @ UIBK	week 6	November 6	week 13	January 15		
		week 7	November 15	IIISL exam	January 22		
	Winter 2008						
	Winter 2000						
S CONTRACTOR S							
GM (Institute of Computer Science @ UIE Organisation	BK', Logic (master program) 1/1	7 GM (Institute of Com Organisation	puter Science @ UIBK)	Logic (master progra	am)	2	:/1
Literature & Onli	ne Material						
Literature Shawn Hedman A First Course in Lo Oxford University Pr ISBN 978-0-19-8529	pgic ress, 2008 081-1	Exercises • officia • howev • I'll giv	& Exam Illy there are no ex ver, without exerc ve bi-weekly exerc	xercises as thi ises you'll sim ises which wil	s course is labell ply fail the exam l be discussed in	ed VO 1 the lecture	
Online Material				Any protes	st?		
Transparencies and ho 138.232 after the lec	omework will be available from IP starting with sture; exercises and solutions will be discussed during						

the lecture

	Introduction
Contentweek 1introduction, propositional logic, semanticsweek 2propositional logic, formal proofs, resolutionweek 3homework: propositional logicfirst-order logic, semanticsweek 4first-order logic, structures, theories and modelsweek 5first-order logic, formal proofs, Herbrand theoryweek 6homework: first-order logic, resolutionweek 7completeness of first-order logic, properties of first-order logicweek 8homework: compactness and completenessintroduction to computabilityweek 9complexity continued, introduction to complexityweek 10complexity continued, finite model theoryweek 11homework: computability and complexityweek 12modal logics continued, introduction to Isabelleweek 13Isabelle frenzy	Content introduction, propositional logic, semantics, formal proofs, resolution (propositional) first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, resolution (first-order), completeness of first-order logic, properties of first-order logic introduction to computability, introduction to complexity, finite model theory beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle
CM (Institute of Computer Science @ IIIDK) Logic (moster program) E/17	CM (Institute of Computer Science @ IIIPIC) Logic (master program) 6/17
Give (institute of Computer Science @ OBM, Logic (inaster program) 5/17	Give (institute of Computer Science @ ODK) Logic (master program) 0/17
Introduction	Introduction
There is not only one logic instead there are many logics: temporal, modal, intuitionistic, fuzzy, dynamic, etc.	 Logic is a language (not only a tool) What is a logic? a logic is a language equipped with rules for deducing the truth of one contones from that of another
There is not only one logic instead there are many logics: temporal, modal, intuitionistic, fuzzy, dynamic, etc. Question why is LICS not enough?	 Logic is a language (not only a tool) What is a logic? a logic is a language equipped with rules for deducing the truth of one sentence from that of another a logic is a formal language each logic is based on some smallest part usually called atoms or atomic formulas

Logic and Computer Science	Content			
 Observation ② (propositional) logic can be used to effective solve MineSweeper automatically logic and computer science form a symbiosis the (time) complexity class NP (for graphs) = those decision problems expressible in existential second-order logic Example MineSweeper solver & generator by Christoph Rungg Example problem: consider {-26, -16, -12, -8, -4, -2, 7, 8, 27}, does some subset add up to 10? 	 Content introduction, propositional logic, semantics, formal proofs, resolution (propositional) first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, resolution (first-order), completeness of first-order logic, properties of first-order logic introduction to computability, introduction to complexity, finite model theory beyond first order: modal logics in a general setting, higher-order logics, introduction to lsabelle 			
the general problem is NP-complete				
GM (Institute of Computer Science @ UIBK) Logic (master program) 9/17 Proposition Logic 9/17	GM (Institute of Computer Science @ UIBK) Logic (master program) 10/17 Proposition Logic			
Propositional Logic: Syntax What is propositional logic? in propositional logic, atomic formulas are propositions $A = "Aristotle is dead" B = "these elections are a catastrophe" Primitive operators \neg > \landDefinition• the formula \neg F is the negation of F• the formula F \land G is the conjunction of F and GDemoBooltoolby Caroline Terzer$	Definitionsubformula• any formula is a subformula of itself• any subformula of F is a subformula of $\neg F$ • any subformula of F and G is a subformula of $(F \land G)$ Convention the formula F and (F) are treated interchanginglyDefinitiontruth tables $\frac{A}{0} \frac{\neg A}{1}$ $\frac{A \mid B \mid (A \land B)}{0 \mid 0 \mid 0}$ 1 \mid 00 1 01 \mid 00 1 01 \mid 1 \mid 1			

Semantics	Semantics
Validity, satisfiability, and contradiction Definition $\lor, \rightarrow, \leftrightarrow$ for formulas F, G • the disjunction $F \lor G$ is defined as $\neg(\neg F \land \neg G)$ • the implication $F \rightarrow G$ is defined as $\neg F \lor G$	Example let $\mathcal{A}(A) = 1$, $\mathcal{A}(B) = 0$, then $\mathcal{A}(A \land B) = 0$ $\mathcal{A}(A \land (C \lor \neg C)) = 1$ $\mathcal{A}(A \land (C \lor \neg C))) = 1$ $\mathcal{A}(B \lor (C \land \neg C)) = 0$
• the bi-implication $F \leftrightarrow G$ is defined as $((F \rightarrow G) \land (G \rightarrow F))$	Definition models • if $\mathcal{A}(F) = 1$ then \mathcal{A} models F
Definitionassignment• let $S = \{A_1, \dots, A_n\}$ be the set of atomic formulas• let $\mathcal{F}(S)$ be the set of all formulas over S	• we write $\mathcal{A} \models F$ Definition valid
 an assignment of S is a function A: S → {0,1} an assignment A extends to an evaluation A(F) of a formula F 	 a formula is valid if it holds under every assignment if F is valid, we write ⊨ F, F is a tautology
GM (Institute of Computer Science @ UIBK, Logic (master program) 13/1/	GM (Institute of Computer Science @ UIBK) Logic (master program) 14/17
GM (Institute of Computer Science @ UBK) Logic (master program) 13/17 Semantics Semantics Semantics Semantics Definition satisfiable satisfiable • a formula is satisfiable if ∃ assignment that satisfies it • otherwise, a formula is unsatisfiable • an unsatisfiable formula is a contradiction	GM (institute of Computer Science @ UBK)Logic (master program)14/17SemanticsDefinitionequivalent• F is a consequence of G and• G is a consequence of F , then• F and G are equivalent• notation: $F \equiv G$
GM (Institute of Computer Science @ UBK) Logic (master program) 13/17 Semantics Consequence and Equivalence satisfiable • a formula is satisfiable if \exists assignment that satisfies it • otherwise, a formula is unsatisfiable • an unsatisfiable formula is a contradiction • Definition consequence • G is consequence of F, if \forall assignments A, when $A \models F$, then $A \models G$ • we write $F \models G$	Institute of Computer Science @ UBK) Logic (master program) 14/17 Semantics Definition equivalent equivalent • F is a consequence of G and equivalent equivalent • G is a consequence of F, then equivalent equivalent • notation: $F \equiv G$ Example $ (F \land (G \lor H)) \equiv ((F \land G) \lor (F \land H)) \qquad \neg (F \land G) \equiv (\neg F \lor \neg G) (F \lor (G \land H)) \equiv ((F \lor G) \land (F \lor H)) \qquad \neg (F \lor G) \equiv (\neg F \land \neg G) $

GM (Institute of Computer Science @ UIBK)

Derivability

Example

 $\mathsf{let}\ \mathcal{F} = \{A, (A \to B), (B \to C), (C \to D), (D \to E), (E \to F), (F \to G)\}$ such that all formulas in \mathcal{F} are true; hence G is true

Question

how many entries has the truth table for $\bigwedge \mathcal{F} \to G$?

Modus Ponens

 $\frac{X \quad X \to Y}{Y}$

Example

