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Summary

Summary of Last Lecture

Definition basic functions
the functions Z, s, pn

i are called basic functions

Definition closed under composition
let S be a set of functions on N and suppose

• ∀ h : Nm → N in S
• ∀ 1 6 i 6 m gi : Nn → N in S

the function defined as:

f (x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is contained in S, then S is closed under composition
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Summary

Primitive Recursive Functions

Definition closed under primitive recursion
let S be a set of functions on N and suppose

• ∀ h : Nn−1 → N in S n > 0

• ∀ g : Nn+1 → N in S
the function defined as:

f (0, x2, . . . , xn) = h(x2, . . . , xn)

f (x1 + 1, . . . , xn) = g(x1, . . . , xn, f (x1, . . . , xn))

is contained in S, then S is closed under primitive recursion

Definition
the primitive recursive functions are the smallest set containing the basic
functions that is closed under composition and primitive recursion
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Summary

Recursive Functions

Definition closed under unbounded search
let S be a set of functions on N and suppose

• ∀ f : Nn+1 → N in S
the function defined as:

µf (x1, . . . , xn) =

z
∀ y 6 z f (~x , y) is defined and
z = min{v | f (~x , v) = 0}

undefined otherwise

is contained in S, then S is closed under unbounded search

Definition
the set of recursive functions is the smallest set containing the primitive
recursive functions that is closed under unbounded search
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Summary

Computable Sets and Relations

Definition characteristic function
the characteristic function χA of A ⊆ Nn:

χA(x1, . . . , xn) =

{
1 (x1, . . . , xn) ∈ A

0 (x1, . . . , xn) 6∈ A

Definition
set A ⊆ Nn is called

• primitive recursive if χA is primitive recursive

• recursive if χA is recursive

Proposition
if A is definable by a quantifier-free Var -formula, then A is primitive
recursive
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Summary

Content

introduction, propositional logic, semantics, formal proofs, resolution
(propositional)

first-order logic, semantics, structures, theories and models, formal proofs,
Herbrand theory, completeness of first-order logic, properties of first-order
logic, resolution (first-order)

introduction to computability, introduction to complexity, finite model
theory

beyond first order: modal logics in a general setting, higher-order logics,
introduction to Isabelle
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Summary

Recursive Functions

let ∃y(y < x ∧ ϕ(x , y)) abbreviate ∃y∃z(y + z = x ∧ z 6= 0 ∧ ϕ(x , y)

Definition closed under bounded quantifiers
let F be a set of Var -formulas and suppose

• ∀ ϕ(x , y) ∈ F
also ∃y(y < x ∧ϕ(x , y)) is contained in F then F is closed under bounded
quantifiers

Definition
∆0 is the smallest set of Var -formulas containing the atomic formulas that
is closed under negation, conjunction and under bounded quantifiers

Proposition
A is definable by a ∆0-formula if and only if A is primitive recursive
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Summary

Proof
we only show direction from left to right; let ϕ(x , y) be a Var -formula
• suppose ϕ(x , y) defines a primitive recursive set A

• as χA(x , y) is primitive recursive:

sumχA
(x , y) =

∑
z<y

χA(x , z)

is primitive recursive

• g(x) := sumχA
(x , x) is primitive recursive

• observe

1 ·− g(x) =

{
0 if ∃ z < x χA(x , z) = 1

1 otherwise

• if B is defined by ∃y(y < x ∧ ϕ(x , y)) then χB = 1 ·− (1 ·− g(x))

• B is primitive recursive

direction from right to left is instrumental in the proof of Gödel’s
Incompleteness Theorem
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Semi-decidable Decision Problems

Semi-decidable Decision Problems

Definition recursive enumerable
A ⊆ Nn is recursively enumerable if ∃ total recursive f : N→ Nn such that

A = {f (0), f (1), f (2), . . . }

Lemma
let A ⊆ Nn and let hA be defined as

hA(x1, . . . , xn) =

{
1 (x1, . . . , xn) ∈ A

undefined otherwise

A is recursive enumerable if and only if hA is partial recursive

Notation
let f and g be partial functions; we write f (x1, . . . , xn)'g(x1, . . . , xn) if the
functions have the same domain and f (x1, . . . , xn) = g(x1, . . . , xn) for any
~x in this domain
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Semi-decidable Decision Problems

Proof
we only show the direction left to right and assume n = 1
• ∃ total recursive f , such that A is range of f

• define g(x , y) = (f (x) ·− y) + (y ·− f (x))

• then g(x , y) = 0 if and only if f (x) = y

• A is domain of µxg(x , y) which is (partial) recursive

• hence hA(x) ' c(µxg(x , y)), where c(x) = 1

decision problem A set A ⊆ Nn function

decidable recursive χA is recursive
semi-decidable r.e. hA is partial recursive
undecidable not recursive χA is not recursive

Example
the n-ary recursive functions are recursively enumerable:

ϕn
0, ϕ

n
1, ϕ

n
2, ϕ

n
3, . . .
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Undecidable Decision Problems

Undecidable Decision Problems
Lemma
• ∀ n, m

• ∃ total primitive recursive function Sm
n such that

ϕm
Sm

n (e,~x)(y1, . . . , ym) ' ϕm+n
e (x1, . . . , xn, y1, . . . , ym)

Definition
let Wi denote the domain of the functions ϕ1

i

Lemma
the following list contains every recursive enumerable set

W0,W1,W2,W3,W4, . . .

Proposition
define

J = {x | x 6∈Wx} K = {x | x ∈Wx}
• J is not recursive enumerable

• K is recursive enumerable, but not recursive
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Undecidable Decision Problems

Rice’s Theorem
Definition
A is (many-one) reducible to B (denoted A6mB) if ∃ total recursive
f : A→ B such that

x ∈ A if and only if f (x) ∈ B

Definition
A ⊆ N is called index set if

x ∈ A and ϕ1
x ' ϕ1

y then y ∈ A

Theorem Rice
let A be an index set; if A is neither ∅ or N, then A is not recursive

Example
the following sets are non-recursive

ID = {x | ϕ1
x is the identity} REC = {x |Wx is recursive}
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Undecidable Decision Problems

Proof
consider a partial recursive function ϕ1

c that is undefined everywhere

Claim
if c ∈ A, then K 6m ∼A

• ∃ partial recursive hK such that

hK (x) =

{
1 x ∈ K

undefined otherwise

• observe ∃ e ∈ ∼A and define

g(x , y) =

{
ϕe(y) hK (x) = 1

undefined otherwise

• ∃ primitive recursive f , such that ϕf (x)(y) ' g(x , y)

• using the fact that A is an index set
we obtain x ∈ K if and only if f (x) ∈ ∼A

hence A is not recursive
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The Arithmetical Hierarchy

The Arithmetical Hierarchy

Definition
a Var -formula ϕ is

Π1 if ϕ ≡ ∀yψ(~x , y) Σ1 if ϕ ≡ ∃yψ(~x , y) ψ ∈ ∆0

Lemma
Σ1 = {r.e. sets}

Definition
a Var -formula ϕ is

• Πn+1 if ϕ ≡ ∀yψ(~x , y)

• Σn+1 if ϕ ≡ ∃yψ(~x , y)

• ∆n+1 if ϕ ∈ Πn+1 ∩ Σn+1

ψ ∈ ∆n

Lemma
∆1 = {recursive sets}
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The Arithmetical Hierarchy

Content

introduction, propositional logic, semantics, formal proofs, resolution
(propositional)

first-order logic, semantics, structures, theories and models, formal proofs,
Herbrand theory, completeness of first-order logic, properties of first-order
logic, resolution (first-order)

introduction to computability, introduction to complexity, finite model
theory

beyond first order: modal logics in a general setting, higher-order logics,
introduction to Isabelle
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Complexity Theory

Complexity Theory

Complexity Theory focuses on the distinction between those
problems that are decidable and those that are really decid-
able. There is nothing in this definition of decidability that
requires the algorithm to be practical. A decision problem
is said to be feasible if it can be resolved by an algorithm
using a reasonable amount of time and space.
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Complexity Theory

recall
• a Turing machine (TM) is deterministic if the transition relation ∆ is

a function, otherwise it is nondeterministic

• T : N→ N, S : N→ N denote numeric functions

Definition time-bounded

• nondeterministic TM runs in time T (n) or

• TM is T (n) time-bounded

• if on all but finitely many inputs x , no computation path takes more
than T (|x |) steps before halting

Definition space-bounded

• nondeterministic TM runs in space S(n) or

• TM is S(n) space-bounded

• if on all but finitely many inputs x , no computation path uses more
than S(|x |) worktape cells
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Complexity Theory

DTIME(T (n)) := {L(M) | M is a deterministic multitape TM running

in time O(T (n))}
NTIME(T (n)) := {L(M) | M is a nondeterministic multitape TM

running in time O(T (n))}
DSPACE(S(n)) := {L(M) | M is a deterministic multitape TM running

in space O(S(n))}
NSPACE(S(n)) := {L(M) | M is a nondeterministic multitape TM

running in space O(S(n))}
Definition

LOGSPACE := DSPACE(log n) NP := NTIME(nO(1))

NLOGSPACE := NSPACE(log n) PSPACE := DSPACE(nO(1))

P := DTIME(nO(1)) NPSPACE := NSPACE(nO(1))

Theorem

LOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE
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Complexity Theory

Problem MAZE
given

• directed graph G with nodes V

• nodes s, t ∈ V

∃ path between s and t?

Lemma
MAZE ∈ NLOGSPACE

Problem CLIQUE
given

• undirected graph G

• number k

∃ k-clique as a subgraph of G?

Lemma
CLIQUE ∈ NP
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