Logic (master program)

Georg Moser

Institute of Computer Science @ UIBK

Winter 2008

Summary of Last Lecture

Definition
basic functions
the functions Z, s, p_{i}^{n} are called basic functions

Definition

let \mathcal{S} be a set of functions on \mathbb{N} and suppose

- $\forall h: \mathbb{N}^{m} \rightarrow \mathbb{N}$ in \mathcal{S}
- $\forall 1 \leqslant i \leqslant m g_{i}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ in \mathcal{S}
the function defined as:

$$
f\left(x_{1}, \ldots, x_{n}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

is contained in \mathcal{S}, then \mathcal{S} is closed under composition

Primitive Recursive Functions

Definition

closed under primitive recursion let \mathcal{S} be a set of functions on \mathbb{N} and suppose

- $\forall h: \mathbb{N}^{n-1} \rightarrow \mathbb{N}$ in \mathcal{S}
- $\forall g: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ in \mathcal{S}
the function defined as:

$$
\begin{aligned}
f\left(0, x_{2}, \ldots, x_{n}\right) & =h\left(x_{2}, \ldots, x_{n}\right) \\
f\left(x_{1}+1, \ldots, x_{n}\right) & =g\left(x_{1}, \ldots, x_{n}, f\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

is contained in \mathcal{S}, then \mathcal{S} is closed under primitive recursion

Definition

the primitive recursive functions are the smallest set containing the basic functions that is closed under composition and primitive recursion

Recursive Functions

Definition
closed under unbounded search let \mathcal{S} be a set of functions on \mathbb{N} and suppose

- $\forall f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ in \mathcal{S}
the function defined as:

$$
\mu_{f}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}z & \forall y \leqslant z f(\vec{x}, y) \text { is defined and } \\ \text { undefined } & z=\min \{v \mid f(\vec{x}, v)=0\} \\ \text { otherwise }\end{cases}
$$

is contained in \mathcal{S}, then \mathcal{S} is closed under unbounded search

Definition

the set of recursive functions is the smallest set containing the primitive recursive functions that is closed under unbounded search

Computable Sets and Relations

Definition

 the characteristic function χ_{A} of $A \subseteq \mathbb{N}^{n}$:$$
\chi_{A}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \left(x_{1}, \ldots, x_{n}\right) \in A \\ 0 & \left(x_{1}, \ldots, x_{n}\right) \notin A\end{cases}
$$

Definition
set $A \subseteq \mathbb{N}^{n}$ is called

- primitive recursive if χ_{A} is primitive recursive
- recursive if χ_{A} is recursive

Proposition

if A is definable by a quantifier-free $\mathcal{V}_{a r}$-formula, then A is primitive recursive

Content

introduction, propositional logic, semantics, formal proofs, resolution (propositional)
first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, completeness of first-order logic, properties of first-order logic, resolution (first-order)
introduction to computability, introduction to complexity, finite model theory
beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle

Recursive Functions

let $\exists y(y<x \wedge \varphi(x, y))$ abbreviate $\exists y \exists z(y+z=x \wedge z \neq 0 \wedge \varphi(x, y)$
Definition
closed under bounded quantifiers
let \mathcal{F} be a set of $\mathcal{V}_{\text {ar }}$-formulas and suppose

- $\forall \varphi(x, y) \in \mathcal{F}$
also $\exists y(y<x \wedge \varphi(x, y))$ is contained in \mathcal{F} then \mathcal{F} is closed under bounded quantifiers

Definition

Δ_{0} is the smallest set of $\mathcal{V}_{a r}$-formulas containing the atomic formulas that is closed under negation, conjunction and under bounded quantifiers

Proposition

A is definable by a Δ_{0}-formula if and only if A is primitive recursive

Proof

we only show direction from left to right; let $\varphi(x, y)$ be a $\mathcal{V}_{a r}$-formula

- suppose $\varphi(x, y)$ defines a primitive recursive set A
- as $\chi_{A}(x, y)$ is primitive recursive:

$$
\operatorname{sum}_{\chi_{A}}(x, y)=\sum_{z<y} \chi_{A}(x, z)
$$

is primitive recursive

- $g(x):=\operatorname{sum}_{\chi_{A}}(x, x)$ is primitive recursive
- observe

$$
1-g(x)= \begin{cases}0 & \text { if } \exists z<x \chi_{A}(x, z)=1 \\ 1 & \text { otherwise }\end{cases}
$$

- if B is defined by $\exists y(y<x \wedge \varphi(x, y))$ then $\left.\left.\chi_{B}=1\right\lrcorner(1\lrcorner g(x)\right)$
- B is primitive recursive
direction from right to left is instrumental in the proof of Gödel's Incompleteness Theorem

Semi-decidable Decision Problems

Definition
recursive enumerable $A \subseteq \mathbb{N}^{n}$ is recursively enumerable if \exists total recursive $f: \mathbb{N} \rightarrow \mathbb{N}^{n}$ such that

$$
A=\{f(0), f(1), f(2), \ldots\}
$$

Lemma

let $A \subseteq \mathbb{N}^{n}$ and let h_{A} be defined as

$$
h_{A}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \left(x_{1}, \ldots, x_{n}\right) \in A \\ \text { undefined } & \text { otherwise }\end{cases}
$$

A is recursive enumerable if and only if h_{A} is partial recursive
Notation
let f and g be partial functions; we write $f\left(x_{1}, \ldots, x_{n}\right) \simeq g\left(x_{1}, \ldots, x_{n}\right)$ if the functions have the same domain and $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right)$ for any \vec{x} in this domain

Proof

we only show the direction left to right and assume $n=1$

- \exists total recursive f, such that A is range of f
- define $g(x, y)=(f(x) \dot{-})+(y \dot{-}(x))$
- then $g(x, y)=0$ if and only if $f(x)=y$
- A is domain of $\mu_{x} g(x, y)$ which is (partial) recursive
- hence $h_{A}(x) \simeq c\left(\mu_{x} g(x, y)\right)$, where $c(x)=1$

decision problem A	set $A \subseteq \mathbb{N}^{n}$	function
decidable	recursive	χ_{A} is recursive
semi-decidable	r.e.	h_{A} is partial recursive
undecidable	not recursive	χ_{A} is not recursive

Example

the n-ary recursive functions are recursively enumerable:

$$
\varphi_{0}^{n}, \varphi_{1}^{n}, \varphi_{2}^{n}, \varphi_{3}^{n}, \ldots
$$

Undecidable Decision Problems

Lemma

- $\forall n, m$
- \exists total primitive recursive function S_{n}^{m} such that

$$
\varphi_{S_{n}^{m}(e, \vec{x})}^{m}\left(y_{1}, \ldots, y_{m}\right) \simeq \varphi_{e}^{m+n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

Definition
let W_{i} denote the domain of the functions φ_{i}^{1}

Lemma

the following list contains every recursive enumerable set

$$
W_{0}, W_{1}, W_{2}, W_{3}, W_{4}, \ldots
$$

Proposition
define

$$
J=\left\{x \mid x \notin W_{x}\right\} \quad K=\left\{x \mid x \in W_{x}\right\}
$$

- J is not recursive enumerable
- K is recursive enumerable, but not recursive

Rice's Theorem

Definition

A is (many-one) reducible to B (denoted $A \leqslant_{\mathrm{m}} B$) if \exists total recursive $f: A \rightarrow B$ such that

$$
x \in A \text { if and only if } f(x) \in B
$$

Definition

$A \subseteq \mathbb{N}$ is called index set if

$$
x \in A \quad \text { and } \quad \varphi_{x}^{1} \simeq \varphi_{y}^{1} \text { then } y \in A
$$

Theorem

let A be an index set; if A is neither \varnothing or \mathbb{N}, then A is not recursive
Example
the following sets are non-recursive

$$
\mathrm{ID}=\left\{x \mid \varphi_{x}^{1} \text { is the identity }\right\} \quad \text { REC }=\left\{x \mid W_{x} \text { is recursive }\right\}
$$

Proof

consider a partial recursive function φ_{c}^{1} that is undefined everywhere

Claim

if $c \in A$, then $K \leqslant m \sim A$

- \exists partial recursive h_{K} such that

$$
h_{K}(x)= \begin{cases}1 & x \in K \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- observe $\exists e \in \sim A$ and define

$$
g(x, y)= \begin{cases}\varphi_{e}(y) & h_{K}(x)=1 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- \exists primitive recursive f, such that $\varphi_{f(x)}(y) \simeq g(x, y)$
- using the fact that A is an index set we obtain $x \in K$ if and only if $f(x) \in \sim A$
hence A is not recursive

The Arithmetical Hierarchy

Definition
a $\mathcal{V}_{a r}$-formula φ is

$$
\Pi_{1} \text { if } \varphi \equiv \forall y \psi(\vec{x}, y) \quad \Sigma_{1} \text { if } \varphi \equiv \exists y \psi(\vec{x}, y) \quad \psi \in \Delta_{0}
$$

Lemma
$\Sigma_{1}=\{$ r.e. sets $\}$
Definition
a $\mathcal{V}_{\text {ar }}$-formula φ is

- Π_{n+1} if $\varphi \equiv \forall y \psi(\vec{x}, y)$
- Σ_{n+1} if $\varphi \equiv \exists y \psi(\vec{x}, y)$
- Δ_{n+1} if $\varphi \in \Pi_{n+1} \cap \Sigma_{n+1}$
$\psi \in \Delta_{n}$
Lemma
$\Delta_{1}=\{$ recursive sets $\}$

Content

introduction, propositional logic, semantics, formal proofs, resolution (propositional)
first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, completeness of first-order logic, properties of first-order logic, resolution (first-order)
introduction to computability, introduction to complexity, finite model theory
beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle

Complexity Theory

Complexity Theory focuses on the distinction between those problems that are decidable and those that are really decidable. There is nothing in this definition of decidability that requires the algorithm to be practical. A decision problem is said to be feasible if it can be resolved by an algorithm using a reasonable amount of time and space.
recall

- a Turing machine (TM) is deterministic if the transition relation Δ is a function, otherwise it is nondeterministic
- $T: \mathbb{N} \rightarrow \mathbb{N}, S: \mathbb{N} \rightarrow \mathbb{N}$ denote numeric functions

Definition
time-bounded

- nondeterministic TM runs in time $T(n)$ or
- TM is $T(n)$ time-bounded
- if on all but finitely many inputs x, no computation path takes more than $T(|x|)$ steps before halting

Definition

space-bounded

- nondeterministic TM runs in space $S(n)$ or
- TM is $S(n)$ space-bounded
- if on all but finitely many inputs x, no computation path uses more than $S(|x|)$ worktape cells
$\operatorname{DTIME}(T(n)):=\{\mathrm{L}(M) \mid \quad M$ is a deterministic multitape TM running in time $O(T(n))\}$
$\operatorname{NTIME}(T(n)):=\{\mathrm{L}(M) \mid \quad M$ is a nondeterministic multitape TM running in time $\mathrm{O}(T(n))$ \}
$\operatorname{DSPACE}(S(n)):=\{\mathrm{L}(M) \mid \quad M$ is a deterministic multitape TM running in space $\mathrm{O}(S(n))$ \}
$\operatorname{NSPACE}(S(n)):=\{\mathrm{L}(M) \mid \quad M$ is a nondeterministic multitape TM running in space $\mathrm{O}(S(n))\}$
Definition

$$
\begin{aligned}
\text { LOGSPACE } & :=\operatorname{DSPACE}(\log n) & \text { NP } & :=\operatorname{NTIME}\left(n^{\mathrm{O}(1)}\right) \\
\operatorname{NLOGSPACE} & :=\operatorname{NSPACE}(\log n) & \operatorname{PSPACE} & :=\operatorname{DSPACE}\left(n^{\mathrm{O}(1)}\right) \\
\mathrm{P} & :=\operatorname{DTIME}\left(n^{\mathrm{O}(1)}\right) & \operatorname{NPSPACE} & :=\operatorname{NSPACE}\left(n^{\mathrm{O}(1)}\right)
\end{aligned}
$$

Theorem
LOGSPACE \subseteq NLOGSPACE $\subseteq \mathrm{P} \subseteq$ NP \subseteq PSPACE \subseteq NPSPACE

Problem MAZE
given

- directed graph G with nodes V
- nodes $s, t \in V$
\exists path between s and t ?
Lemma
MAZE \in NLOGSPACE
Problem
given
- undirected graph G
- number k
$\exists k$-clique as a subgraph of G ?
Lemma
CLIQUE \in NP

