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Summary

Summary of Last Lecture

Primitive operators

¬ > ∧

Definition formula formation

• the formula ¬F is the negation of F

• the formula F ∧ G is the conjunction of F and G

Definition subformula

• any formula is a subformula of itself

• any subformula of F is a subformula of ¬F

• any subformula of F and G is a subformula of (F ∧ G )

Convention
the formula F and (F ) are treated interchangingly
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Summary

Definition assignment
• let S be the set of atomic formulas

• let F(S) be the set of all formulas over S
• an assignment of S is a function A : S → {0, 1}

Definition models
• if A(F ) = 1 then A models F

• we write A |= F

Definition valid
• a formula is valid if it holds under every assignment

• if F is valid, we write |= F , F is a tautology

Definition satisfiable
• a formula is satisfiable if ∃ assignment that satisfies it

• otherwise, a formula is unsatisfiable

• an unsatisfiable formula is a contradiction
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Summary

Definition consequence

• G is consequence of F , if ∀ assignments A, when A |= F , then A |= G

• we write F |= G

Lemma
G is consequence of F if and only if F → G is a tautology

Definition
let F = {F1, F2, . . . } be a set of formulas

• A models F (A |= F), if ∀ F : A |= F

• G is a consequence of F (F |= G ), if ∀ A: A |= F implies A |= G
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Content

Content

introduction, propositional logic, semantics, formal proofs, resolution
(propositional)

first-order logic, semantics, structures, theories and models, formal proofs,
Herbrand theory, resolution (first-order), completeness of first-order logic,
properties of first-order logic

introduction to computability, introduction to complexity, finite model
theory

beyond first order: modal logics in a general setting, higher-order logics,
introduction to Isabelle
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Content

Definition proof system

• a proof system consists of rules for derivations

• which allow to deduce, step by step, formulas from set of formulas

• the list of steps is called formal proof

Soundness
if a formula G is derivable from a set of formulas F ,
then G is a consequence of F

Completeness
if a formula G is a consequence of a set of formulas F ,
then G is derivable from F

Decidability
∃ an (efficient) procedure that decides whether G is derivable from F
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Rules for Derivations

Some Rules

premise conclusion name

G ∈ F F ` G assumption

F ` G ∧ F ⊂ F ′ F ′ ` G monotonicity

F ` G F ` ¬¬G double negation

F ` F ,F ` G F ` (F ∧ G ) ∧-introduction

F ` (F ∧ G ) F ` F ∧-elimination

F ` (F ∧ G ) F ` (G ∧ F ) ∧-symmetry

F ` F F ` F ∨ G ∨-introduction

F ` (F ∨ G ),F ∪ {F} ` H,F ∪ {G} ` H F ` H ∨-elimination

F ` (F ∨ G ) F ` (G ∨ F ) ∨-symmetry

F ∪ {F} ` G F ` (F → G ) →-introduction

F ` (F → G ),F ` F F ` G →-elimination
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Rules for Derivations

More Rules

premise conclusion name

F ` F F ` (F ) ()-introduction

F ` (F ) F ` F ()-elimination

F ` ((F ∧ G ) ∧ H) F ` (F ∧ G ∧ H) ∧-parentheses

F ` ((F ∨ G ) ∨ H) F ` (F ∨ G ∨ H) ∨-parentheses

F ` (F ∨ G ) F ` ¬(¬F ∧ ¬G ) ∨-definition

F ` ¬(¬F ∧ ¬G ) F ` (F ∨ G )

F ` (F → G ) F ` (¬F ∨ G ) →-definition

F ` (¬F ∨ G ) F ` (F → G )

F ` (F ↔ G ) F ` (F → G ) ∧ (G → F ) ↔-definition

F ` (F → G ) ∧ (G → F ) F ` (F ↔ G )
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Rules for Derivations

Derived Rules

Definition formal proof

• a formal proof is a finite sequence of statements of the form F ` G

• each statement follows from previous ones, by the stated rules

• we say G is derived from F if there is a formal proof of F ` G

Example ∨-modus ponens
we show the derivability of the following rule

F ` F F ` (¬F ∨ G )

F ` G

1: F ` F assumption

2: F ` (¬F ∨ G ) assumption

3: F ` (F → G ) →-definition

4: F ` G →-elimination
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Rules for Derivations

Example
let H = {(¬A ∨ B), (¬A ∨ C ), (A ∨ ¬D)}, derivation of

D → (A ∧ B ∧ C )

from H (on blackboard)

Example derived rules

F ` (¬G ∨ G )

tautology

F ` (¬F ∧ F )

F ` G

contradiction

F ∪ {F} ` G

F ∪ {¬G} ` ¬F
contraposition

F ∪ {F} ` G F ∪ {¬F} ` G

F ` G

proof by cases
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Soundness

Soundness Theorem
Theorem
if a formula G is derivable from a set of formulas F ,
then G is a consequence of F

Proof
premise conclusion name

G ∈ F F |= G assumption

F |= G ∧ F ⊂ F ′ F ′ |= G monotonicity

F |= G F |= ¬¬G double neg

F |= F ,F |= G F |= (F ∧ G ) ∧-introduction

F |= (F ∧ G ) F |= F ∧-elimination

F |= F F |= F ∨ G ∨-introduction

F |= (F ∨ G ),F ∪ {F} |= H,F ∪ {G} |= H F |= H ∨-elimination

F |= (F ∨ G ) F |= (G ∨ F ) ∨-symmetry
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Soundness

Corollary
if G is derived from ∅, then G is tautology

Proof
• if ∅ ` G , then F ` G by monotonicity

• by soundness F |= G for any set of formulas F
• (F ∨ ¬F ) |= G

• ∀ A (A |= (F ∨ ¬F ) implies A |= G )

• ∀ A A |= G

Corollary
if ¬G can be derived from ∅, then G is a contradiction

Corollary
• formulas F and G are provably equivalent if {F} ` G ∧ {G} ` F

• provable equivalent formulas are equivalent
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Substitution Theorem and Normal Forms

Theorem
1 suppose F ≡ G

2 suppose H contains F as subformula and let H ′ = H{F 7→ G}
3 then H ≡ H ′

Proof
by structural induction on the H

Definition
• a literal is an atomic formula or its negation

• a formula F is in conjunctive normal form (CNF) if

F =
n∧

i=1

( m∨
j=1

Lij

)
Lij a literal

• a formula F is in disjunctive normal form (DNF) if

F =
n∨

i=1

( m∧
j=1

Lij

)
Lij a literal
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Resolution

Resolution

Reminder
compare week 3 @ LICS

Definition clause

• 2 is a clause

• literals are clauses

• if C , D are clauses, then C ∨ D is a clause

we use the equivalences C ∨2 ∨ D ≡ C ∨ D, 2 ∨2 ≡ 2
Example
let A, B be atomic formulas

A ∨ B A ∨ ¬B A ∨ ¬B ∨ A A ∨2
Question
is {A,¬B} a clause?
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Resolution

Observation
the set notation of clauses implicitly assumes equivalence under:

A ∨ A ≡ A︸ ︷︷ ︸
idempotency

A ∨ B ≡ B ∨ A︸ ︷︷ ︸
commutativity

(A ∨ B) ∨ C ≡ A ∨ (B ∨ C )︸ ︷︷ ︸
associativity

Convention
we assert equivalence under commutativity and associativity and ¬¬A ≡ A
for literals

Definition (propositional) resolution
C ∨ A D ∨ ¬A

C ∨ D︸ ︷︷ ︸
resolvent

Definition (propositional) factoring
C ∨ A ∨ A

C ∨ A︸ ︷︷ ︸
factor
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Completeness & Compactness

Completeness & Compactness

Lemma
let X be an infinite set of finite binary strings

• ∃ an infinite binary string w so that
any prefix of w is also a prefix of infinitely many x ∈ X

Theorem compactness
a set of formulas of propositional logic is satisfiable iff every finite subset is
satisfiable

Proof
use the lemma

Theorem completeness
if a formula G is a consequence of a set of formulas F , then G is derivable
from F
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