Summary of Last Lecture

Logic (master program)

Georg Moser

Institute of Computer Science @ UIBK

Winter 2008

premise	conclusion	name
$G \in \mathcal{F}$	$\mathcal{F} \vdash G$	assumption
$\mathcal{F} \vdash G \wedge \mathcal{F} \subset \mathcal{F}^{\prime}$	$\mathcal{F} \vdash G$	monotonicity
$\mathcal{F} \vdash G$	$\mathcal{F} \vdash \neg \neg G$	double negation
$\mathcal{F} \vdash F, \mathcal{F} \vdash G$	$\mathcal{F} \vdash(F \wedge G)$	\wedge-introduction
$\mathcal{F} \vdash(F \wedge G)$	$\mathcal{F} \vdash F$	\wedge-elimination
$\mathcal{F} \vdash(F \wedge G)$	$\mathcal{F} \vdash(G \wedge F)$	\wedge-symmetry
$\mathcal{F} \vdash F$	$\mathcal{F} \vdash F \vee G$	\vee-introduction
$\mathcal{F} \vdash(F \vee G), \mathcal{F} \cup\{F\} \vdash H, \mathcal{F} \cup\{G\} \vdash H$	$\mathcal{F} \vdash H$	\vee-elimination
$\mathcal{F} \vdash(F \vee G)$	$\mathcal{F} \vdash(G \vee F)$	\vee-symmetry
$\mathcal{F} \cup\{F\} \vdash G$	$\mathcal{F} \vdash(F \rightarrow G)$	\rightarrow-introduction
$\mathcal{F} \vdash(F \rightarrow G), \mathcal{F} \vdash F$	$\mathcal{F} \vdash G$	\rightarrow-elimination

More Rules

premise	conclusion	name
$\mathcal{F} \vdash F$	$\mathcal{F} \vdash(F)$	() -introduction
$\mathcal{F} \vdash(F)$	$\mathcal{F} \vdash F$	() -elimination
$\mathcal{F} \vdash((F \wedge G) \wedge H)$	$\mathcal{F} \vdash(F \wedge G \wedge H)$	\wedge-parentheses
$\mathcal{F} \vdash((F \vee G) \vee H)$	$\mathcal{F} \vdash(F \vee G \vee H)$	\vee-parentheses
$\mathcal{F} \vdash(F \vee G)$	$\mathcal{F} \vdash \neg(\neg F \wedge \neg G)$	\vee-definition
$\mathcal{F} \vdash \neg(\neg F \wedge \neg G)$	$\mathcal{F} \vdash(F \vee G)$	
$\mathcal{F} \vdash(F \rightarrow G)$	$\mathcal{F} \vdash(\neg F \vee G)$	\rightarrow-definition
$\mathcal{F} \vdash(\neg F \vee G)$	$\mathcal{F} \vdash(F \rightarrow G)$	
$\mathcal{F} \vdash(F \leftrightarrow G)$	$\mathcal{F} \vdash(F \rightarrow G) \wedge(G \rightarrow F)$	\leftrightarrow-definition
$\mathcal{F} \vdash(F \rightarrow G) \wedge(G \rightarrow F)$	$\mathcal{F} \vdash(F \leftrightarrow G)$	

Resolution

Definition

- \square is a clause
- literals are clauses
- if C, D are clauses, then $C \vee D$ is a clause

Convention

we assert equivalence under commutativity and associativity and $\neg \neg A \equiv A$ for literals

Definition
(propositional) resolution

$$
\frac{C \vee A D \vee \neg A}{C \vee D}
$$

Definition
(propositional) factoring

$$
\frac{C \vee A \vee A}{C \vee A}
$$

Soundness, Completeness and Compactness

Theorem
if a formula G is derivable from a set of formulas \mathcal{F}, then G is a consequence of \mathcal{F}

Theorem
compactness
a set of formulas of propositional logic is satisfiable iff every finite subset is satisfiable

Theorem completeness if a formula G is a consequence of a set of formulas \mathcal{F}, then G is derivable from \mathcal{F}

- Exercise 1.1.
- Exercise 1.2.
- Exercise 1.21.
- Exercise 1.34.
- Exercise 1.35 .

Content

introduction, propositional logic, semantics, formal proofs, resolution (propositional)
first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, resolution (first-order), completeness of first-order logic, properties of first-order logic
introduction to computability, introduction to complexity, finite model theory
beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle

Language of First-Order Logic

fixed part	connectives	as for propositional logic
	quantifiers	\forall reads "for all"
		\exists reads "there exists"
	brackets	$),($
	variables	x, y, z, \ldots
variable part		
	relation symbols	$=, P, Q, R, S, \ldots$
	function symbols	f, g, h, \ldots
	constant symbols	a, b, c, \ldots

Example

$$
\exists x_{1} \exists x_{2} \exists x_{3}\left(\neg\left(x_{1}=x_{2}\right) \wedge \neg\left(x_{1}=x_{3}\right) \wedge \neg\left(x_{2}=x_{3}\right)\right)
$$

terms are defined inductively as follows

- every variable and constant is a term
- if f is an n-ary function symbol, and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term

Definition

 atomic formula an atomic formula is an expression of form $t_{1}=t_{2}$ or $R\left(t_{1}, \ldots, t_{n}\right)$, where R is an n-ary relation symbol and t_{1}, \ldots, t_{n} are terms
Definition

formulas
a formula is an expression that is either an atomic formula or generated through the following rules

- if φ is a formula, so is $\neg \varphi$
- if φ and ψ are formulas, so is $\varphi \wedge \psi$
- if φ is a formula, then so is $\exists x \varphi$
- the symbols \vee, \rightarrow, \leftrightarrow are defined as in propositional logic
- we define $\forall x \varphi$ as $\neg \exists x \neg \varphi$

Priorities

$$
\neg, \exists, \forall \quad>\quad \wedge, \vee, \rightarrow, \leftrightarrow
$$

Definition

subformula

- any formula φ is a subformula of itself
- any subformula of φ is a subformula of $\neg \varphi$
- any subformula of φ and ψ is a subformula of $\varphi \wedge \psi$
- any subformula of φ is a subformula of $\exists x \varphi$

Definition

we define the set free (φ) of free variables inductively

- if φ is atomic, free $(\varphi)=\{x \mid$ variable x occurs in $\varphi\}$
- if $\varphi=\neg \psi$, then free $(\varphi)=$ free (ψ)
- if $\varphi=\psi \wedge \theta$, then free $(\varphi)=$ free $(\psi) \cup$ free (θ)
- if $\varphi=\exists x \psi$, then free $(\varphi)=$ free $(\psi) \backslash\{x\}$

Definition

we define the set $\operatorname{bnd}(\varphi)$ of bound variables inductively

- if φ is atomic, $\operatorname{bnd}(\varphi)=\varnothing$
- if $\varphi=\neg \psi$, then $\operatorname{bnd}(\varphi)=\operatorname{bnd}(\psi)$
- if $\varphi=\psi \wedge \theta$, then $\operatorname{bnd}(\varphi)=\operatorname{bnd}(\psi) \cup \operatorname{bnd}(\theta)$
- if $\varphi=\exists x \psi$, then $\operatorname{bnd}(\varphi)=\operatorname{bnd}(\psi) \cup\{x\}$

free (φ)

Semantics of First-Order Logic

Definition

vocabulary
a vocabulary is a set of function, relation and constant symbols

Definition

structure
a structure \mathcal{M} is a pair (U, I), where U is called the universe of the structure and I denotes an interpretation of the vocabulary \mathcal{V} such that

- $c^{\mathcal{M}} \in U$ for each constant in \mathcal{V}
- $f^{\mathcal{M}}: U^{n} \rightarrow U$ for each function symbol in \mathcal{V}
- $R^{\mathcal{M}} \subseteq U^{n}$ for each predicate symbol in \mathcal{V}
to emphasise the vocabulary, we sometimes speak of a \mathcal{V}-structure

Example

consider $\exists x(R(x, y) \wedge \exists y R(y, x))$

Example

let $\mathcal{V}=\{c, f, R\}, c$ constant, f is unary, R is binary

- $f^{\mathcal{M}}(x)=x^{2}$
- $(x, y) \in R^{\mathcal{M}} \Longleftrightarrow x<y$

Convention

we write $\mathcal{M}=(\mathbb{Z}, c, f, R)$ for the above structure, if no confusion can arise

Example

- $\mathcal{V}=\{+, \cdot, 0,1\}$
- $\mathbf{R}=(\mathbb{R},+, \cdot, 0,1)$ denotes the "usual" structure of the reals, where the constants and functions admit their standard interpretation

Definition

- a \mathcal{V}-formula contains only the function, relation, constants in \mathcal{V}
- a \mathcal{V}-sentence is a \mathcal{V}-formula that doesn't contain free variables

Definition

$$
\mathcal{M} \models \varphi
$$

we define $\mathcal{M} \models \varphi$ for sentences φ by structural induction

$$
\begin{array}{ll}
\mathcal{M} \models t_{1}=t_{2} & \\
\text { if } t_{1}, t_{2} \text { are interpreted as the same element in } \\
\mathcal{M} \models P\left(t_{1}, \ldots, t_{n}\right) & \\
\text { universe } U \text { of } \mathcal{M} \\
\mathcal{M} \models \neg \varphi & \\
\left.\mathcal{M}, \ldots, t_{n}^{\mathcal{M}}\right) \in P^{\mathcal{M}} \\
\mathcal{M} \models \varphi \wedge \psi & \\
\mathcal{M} \models \exists x \varphi & \\
\mathcal{M} \not \models \varphi \\
\mathcal{M} \models \varphi \wedge \mathcal{M} \models \psi \\
&
\end{array}
$$

Definition

let \mathcal{V} be a vocabulary, \mathcal{M} a \mathcal{V}-structure

- an expansion \mathcal{V}^{\prime} of \mathcal{V} is any vocabulary that is superset of \mathcal{V}
- an expansion \mathcal{M}^{\prime} of \mathcal{M} if \mathcal{M}^{\prime}

1 has the same universe as \mathcal{M}
2 interprets the elements of \mathcal{V} as in \mathcal{M}

- if \mathcal{M}^{\prime} is an expansion of \mathcal{M}, then \mathcal{M} is a reduct of \mathcal{M}^{\prime}

Lemma

let \mathcal{M} be \mathcal{V}-structure and \mathcal{M}^{\prime} an \mathcal{V}^{\prime}-structure; suppose \mathcal{M}^{\prime} is an expansion of \mathcal{M}; then \mathcal{V}^{\prime} is an expansion of \mathcal{V}

Example

consider

$$
\mathcal{M}^{\prime}=(\mathbb{R},+,-, \cdot,<, 0,1) \quad \mathcal{M}=(\mathbb{R},+, \cdot, 0,1)
$$

\mathcal{M}^{\prime} is an expansion of \mathcal{M}

