

Definition

formulas

a formula is an expression that is either an atomic formula or generated through the following rules

- if φ is a formula, so is $\neg\varphi$
- if φ and ψ are formulas, so is $\varphi \wedge \psi$
- if φ is a formula, then so is $\exists x \varphi$

Definition

a vocabulary is a set of function, relation and constant symbols

Definition

a structure \mathcal{M} is a pair (U, I), where U is called the universe of the structure and I denotes an interpretation of the vocabulary \mathcal{V} :

- $c^{\mathcal{M}} \in U$ for each constant in \mathcal{V}
- $f^{\mathcal{M}} \colon U^n \to U$ for each function symbol in \mathcal{V}
- $R^{\mathcal{M}} \subseteq U^n$ for each predicate symbol in \mathcal{V}

GM (Institute of Computer Science @ UIBK) Logic (master program)

Semantics of First-Order Logic

Definition

let $\mathcal M$ be a $\mathcal V$ -structure with universe U

- $\mathcal{V}(\mathcal{M}) = \mathcal{V} \cup \{c_m \mid m \in U\}$
- $\mathcal{M}_{\mathcal{C}}$ denotes the expansion to a $\mathcal{V}(\mathcal{M})$ -structure that interprets all constants c_m as the element m

Definition

we define $\mathcal{M} \models \varphi$ by structural induction

$$\begin{array}{ll} \mathcal{M} \models \exists x \varphi & \quad \text{if } \mathcal{M}_{\mathcal{C}} \models \varphi(c) \text{ for some } c \in \mathcal{V}(\mathcal{M}) \\ \mathcal{M} \models \forall x \varphi & \quad \text{if } \mathcal{M}_{\mathcal{C}} \models \varphi(c) \text{ for all } c \in \mathcal{V}(\mathcal{M}) \end{array}$$

Definition

let \mathcal{M} be a \mathcal{V} -structure, let φ be a $\mathcal{V}(\mathcal{M})$ -sentence

 $\mathcal{M} \models \varphi \qquad \text{if } \mathcal{M}_{\mathcal{C}} \models \varphi$

 $\mathcal{M} \models \varphi$

49/178

structure

Content

introduction, propositional logic, semantics, formal proofs, resolution (propositional)

first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, resolution (first-order), completeness of first-order logic, properties of first-order logic

introduction to computability, introduction to complexity, finite model theory

beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle

Structures of First-Order Logic

Definition

let $\mathcal M$ be a structure with universe U

- $\varphi(\mathcal{M}) = \{(a_1, \ldots, a_n) \in U^n \mid \mathcal{M} \models \varphi(a_1, \ldots, a_n)\}$
- $arphi(\mathcal{M})$ is called \mathcal{V} -definable subset of \mathcal{M}

Example

let $\mathcal{V}_{<} = \{<\}$, let $\mathbf{R}_{<} = (\mathbb{R}, <)$, consider the $\mathcal{V}_{<}(\mathbf{R}_{<})$ -formulas $\varphi(x, y) = (x < y) \lor (x > y) \lor (x = y)$ $\psi(x) = (\neg(x < 3) \land \neg(x = 3) \land \neg(5 < x)) \lor (x = 5) \lor (x < -2)$

- R_< ⊨ φ(a, b) for all (a, b) ∈ ℝ² hence the set defined by φ(x, y) is all of ℝ²
- the set defined by $\psi(x)$ is $a \in (-\infty, -2) \cup (3, 5]$

53/178

definable

Definition

- a (undirected) graph is a set of points, called nodes (or vertices) and edges that connect nodes
- two vertices are adjacent if connected by an edge

Example

- each graph G forms a structure (U, R), where U denotes the nodes and R is interpreted as the edge relation
- hence any graph models the following sentences

 $\forall x \neg R(x,x) \qquad \forall x \forall y (R(x,y) \leftrightarrow R(y,x))$

Definition

- a path from a to b (in a graph G)
 is a sequence of vertices beginning with a and ending in b such that
 each vertex other than a is adjacent to the previous vertex
- *G* is connected

if for any two vertices a and b in G, exists a path from a to b

Separation Structures

Definition

• any graph that models

$$\forall x \forall y (\neg (x = y) \rightarrow R(x, y))$$

is a clique

• a clique with *n* nodes is called *n*-clique, denoted as K_n

Example

the fourth graph is the 8-clique K_8

Definition

graphs G_1 and G_2 are isomorphic if there exists a bijective function $f: G_1 \rightarrow G_2$ such that

a R b if and only if f(a) R f(b)

Example

- any two *n*-cliques are isomorphic
- graphs 2 and 3 are isomorphic

The Size of a Structure

Definition

- for any set U, the cardinality |U| of U, denotes the number of elements in U
- for a structure \mathcal{M} , $|\mathcal{M}|$ denotes the cardinality of the universe of \mathcal{M}

Definition

let A, B be (possible infinite) sets, we set $|A| \leq |B|$ if $\exists f : A \rightarrow B$, such that f is injective

Definition

- we say A and B have the same size (denoted |A| = |B|) if |A| ≤ |B| and |B| ≤ |A|
- we write |A| < |B| if $|A| \leq |B|$ but not |A| = |B|

GM (Institute of Computer Science @ UIBK) Logic (master program)
The Size of a Structure

Example

let I = (0, 1) denote the interval of reals between 0 and 1, the function $f : \mathbb{R} \to I$ defined as

$$f(x) = \frac{2}{\pi} \arctan x$$

is a bijection from $\mathbb R$ to I, hence $|\mathbb R| = |I|$

Theorem

Bernstein's Theorem

sets A and B have the same size if and only if there exists a bijection between A and B

Proof Sketch

- suppose there exists a bijection f: A → B then |A| ≤ |B| by definition as f is injective on the other hand f⁻¹: B → A exists and is injective, hence |B| ≤ |A|
- for the reverse direction, ∃ injective f: A → B and g: B → A build a bijection h: A → B

59/178

Countable and Uncountable Sets

Definition

a set A

- is denumerable if \exists bijection $f: A \to \mathbb{N}$
- is countable if A is finite or denumerable, otherwise it is uncountable

Example

the set of natural number, integers, and rational number \mathbb{Q} is countable, the set of real number is uncountable

Theorem

the union of countable sets is countable

Theorem

if the vocabulary ${\mathcal V}$ is countable, so is the set of all ${\mathcal V}\text{-formulas}$

GM (Institute of Computer Science @ UIBK) Logic (master program)
The Size of a Structure

Theorem

for any set A, $|A| < |\mathcal{P}(A)|$

Proof

- define $f: A \to \mathcal{P}(A)$ as follows $f(a) = \{a\}$; hence $|A| \leq |\mathcal{P}(A)|$
- we show $|A| \neq |\mathcal{P}(A)|$
 - **1** suppose $g: A \to \mathcal{P}(A)$, such that g is injective, and g is surjective
 - **2** for each $a \in A$, either $a \in g(a)$ or $a \notin g(a)$
 - 3 set $X = \{a \mid a \notin g(a)\}$
 - 4 there exists no a such that g(a) = X
 - 5 contradiction

Theorem

the set of all functions from $\mathbb N$ to $\mathbb N$ is uncountable

Proof Sketch

let *F* denote the set of all functions from \mathbb{N} to \mathbb{N} , it suffices to show $|I| \leq |F|$ which is not too difficult

61/178