

Summary of Last Lecture

Model theory is a technique, that given a model of a system and a formal property checks whether this property holds for that model

definable

let \mathcal{M} be a structure with universe U

- $\varphi(\mathcal{M}) = \{(a_1, \ldots, a_n) \in U^n \mid \mathcal{M} \models \varphi(a_1, \ldots, a_n)\}$
- $\varphi(\mathcal{M})$ is called \mathcal{V} -definable subset of \mathcal{M}

Definition

Definition

let A, B be (possible infinite) sets, we set $|A| \leq |B|$ if $\exists f : A \rightarrow B$, such that f is injective

Definition

- we say A and B have the same size (denoted |A| = |B|) if |A| ≤ |B| and |B| ≤ |A|
- we write |A| < |B| if $|A| \leq |B|$ but not |A| = |B|

GM (Institute of Computer Science @ UIBK)

Theorem

Bernstein's Theorem

64/178

sets A and B have the same size if and only if there exists a bijection between A and B

Logic (master program)

Definition

a set A

- is denumerable if \exists bijection $f: A \rightarrow \mathbb{N}$
- is countable if A is finite or denumerable, otherwise it is uncountable

Theorem

- if the vocabulary ${\mathcal V}$ is countable, so is the set of all ${\mathcal V}\text{-formulas}$
- the set of all functions from $\mathbb N$ to $\mathbb N$ is uncountable

Corollary

there are uncountable many properties (over a countable vocabulary) that cannot be defined

Content

introduction, propositional logic, semantics, formal proofs, resolution (propositional)

first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, resolution (first-order), completeness of first-order logic, properties of first-order logic

introduction to computability, introduction to complexity, finite model theory

beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle

Relations Between Structures

GM (Institute of Computer Science @ UIBK) Logic (master program)

Definition

• let \mathcal{M} and \mathcal{N} be \mathcal{V} -structures, a function $f: \mathcal{M} \to \mathcal{N}$ preserves the \mathcal{V} -formula $\varphi(x_1, \ldots, x_n)$ if for each tuple a_1, \ldots, a_n in \mathcal{M}

 $\mathcal{M} \models \varphi(a_1, \ldots, a_n)$ implies $\mathcal{N} \models \varphi(f(a_1), \ldots, f(a_n))$

66/178

embedding

- if *f* preserves all *V*-formulas that are literals, then *f* is a (literal) embedding
- if f preserves all \mathcal{V} -formulas, then f is an elementary embedding

Definition

existential

- a quantifier-free formula does not contain the quantifiers \forall , \exists
- an existential formula is of form

 $\exists y_1 \ldots \exists y_m \varphi(\overline{x}, y_1, y_2, \ldots, y_m)$

such that $\varphi(\overline{x}, y_1, y_2, \dots, y_m)$ is quantifier free

Lemma

let $f: \mathcal{M} \to \mathcal{N}$ be an embedding; then for any quantifier-free formula $\varphi(\overline{x})$ and any tuple \overline{a} of elements in \mathcal{M}

$$\mathcal{M} \models \varphi(\overline{a})$$
 if and only if $\mathcal{N} \models \varphi(f(\overline{a}))$

Proof

by induction on φ

GM (Institute of Computer Science @ UIBK) Relations Between Structures

Lemma

embeddings preserve existential formulas

Proof

• let $f: \mathcal{M} \to \mathcal{N}$ be an embedding; let $\varphi(\overline{x})$ be existential

Logic (master program)

- set $\varphi(\overline{x}) = \exists y_1 \dots \exists y_m \psi(\overline{x}, y_1, y_2, \dots, y_m)$
- by the semantics of \exists , $\mathcal{M} \models \varphi(\overline{a})$ means

$$\mathcal{M} \models \psi(\overline{a}, \overline{b})$$
 for some \overline{b}

• from previous lemma

 $\mathcal{N} \models \psi(f(\overline{a}), f(\overline{b}))$

hence

$$\mathcal{N} \models \varphi(f(\overline{a}))$$

Fact

any embedding $f: \mathcal{M} \to \mathcal{N}$ is injective, as $\mathcal{M} \models a \neq b$ if and only if $\mathcal{N} \models f(a) \neq f(b)$

Isomorphism

Lemma

if $f: \mathcal{M} \to \mathcal{N}$ is onto, then f is a literal embedding if and only if f is an elementary embedding

Proof Sketch

on proves by induction that f and f^{-1} preserve each formula

Definition

isomorphism

- a bijective $f: \mathcal{M} \to \mathcal{N}$ is an isomorphism, if it preserves every formula
- if an isomorphism exists, then \mathcal{M} and \mathcal{N} are isomorphic ($\mathcal{M}\cong\mathcal{N}$)

Definition

elementarily equivalent

if \mathcal{M} and \mathcal{N} model the same sentences, then \mathcal{M} and \mathcal{N} are elementary equivalent $(\mathcal{M} \equiv \mathcal{N})$

Fact

if $\mathcal{M}\cong\mathcal{N}$, then $\mathcal{M}\equiv\mathcal{N}$

GM (Institute of Computer Science @ UIBK) Logic (master program)

Definition

substructure

70/178

 \mathcal{M} is substructure of \mathcal{N} ($\mathcal{M} \subseteq \mathcal{N}$) if

- **1** \mathcal{M} and \mathcal{N} are structures that have the same vocabulary
- **2** the universe of \mathcal{M} is a subset of the universe of \mathcal{N}
- 3 ${\mathcal M}$ interprets the vocabulary in the same way as ${\mathcal N}$

Example

Definition

if $\mathcal{M} \subseteq \mathcal{N}$, then \mathcal{N} is an extension of \mathcal{M}

Definition

• a formula $\varphi(\overline{x})$ is preserved under extensions when

$$\text{if} \quad \mathcal{M} \subseteq \mathcal{N} \quad \text{then} \quad \mathcal{M} \models \varphi(\overline{a}) \quad \text{implies} \quad \mathcal{N} \models \varphi(\overline{a})$$

• a formula $\varphi(\overline{x})$ is preserved under substructures when

$$f \quad \mathcal{M} \subseteq \mathcal{N} \quad \text{then} \quad \mathcal{N} \models \varphi(\overline{a}) \quad \text{implies} \quad \mathcal{M} \models \varphi(\overline{a})$$

Theorem

- quantifier-free formulas are preserved under substructures and extensions
- existential formulas are preserved under extensions

Definition

a universal formula is of form $\forall y_1 \dots \forall y_m \varphi(\overline{x}, y_1, y_2, \dots, y_m)$ such that $\varphi(\overline{x}, y_1, y_2, \dots, y_m)$ is quantifier free

 GM (Institute of Computer Science @ UIBK)
 Logic (master program)

 Relations Between Structures

Elementary Substructure

Theorem

universal formulas are preserved under substructures

Definition

elementary substructure

 \mathcal{M} is an elementary substructure of \mathcal{N} ($\mathcal{M}\prec\mathcal{N}$) if id: $\mathcal{M}\to\mathcal{N}$ is an elementary embedding

Example

- let $\mathcal{N} = (\mathbb{N}, \text{succ})$ denote the structure of the naturals, where succ denotes the successor
- let \mathcal{M} be the substructure of \mathcal{N} on universe $\{1, 2, 3, 4, \dots\}$
- define $f: \mathcal{M} \to \mathcal{N}$ as f(x) = x + 1
- *f* is an isomorphism, hence $\mathcal{M} \cong \mathcal{N}$ and $\mathcal{M} \subseteq \mathcal{N}$
- but id is not an elementary embedding, let $\varphi(x) :\Leftrightarrow \neg \exists y(s(y) = x)$

$$\mathcal{M}\models arphi(1) \qquad \mathcal{N} \not\models arphi(1)$$

Diagrams

Definition

diagram

74/178

- the elementary diagram (ED(M)) of a structure M is the set of all $\mathcal{V}(M)$ -sentences that hold in \mathcal{M}_C
- the (literal) diagram (D(M)) of a structure M is the set of all literals in ED(M)

Theorem

the following assertions are equivalent

- **1** \mathcal{M} can be (literal) embedded into \mathcal{N}
- **2** \exists expansion \mathcal{N}' of \mathcal{N} such that $\mathcal{N}' \models \mathsf{D}(\mathcal{M})$
- **3** \exists extension \mathcal{M}' of \mathcal{M} such that $\mathcal{M}' \cong \mathcal{N}$

GM (Institute of Computer Science @ UIBK) Relations Between Structures Logic (master program)

Theorem

let \mathcal{V} be finite, for any finite $\mathcal{M} \exists$ formula $\varphi_{\mathcal{M}}$ such that for any finite \mathcal{V} -structure \mathcal{N} , $\mathcal{N} \models \varphi_{\mathcal{M}}$ if and only if $\mathcal{M} \cong \mathcal{N}$

Proof

- let $\overline{a} = \{a_1, a_2, \dots, a_n\}$ be the universe of \mathcal{M}
- let $\varphi(\overline{a})$ denote the conjunction of all literals in $D(\mathcal{M})$
- let $\exists \overline{x} \varphi(\overline{x}) : \Leftrightarrow \exists x_1 \exists x_2 \dots \exists x_n \varphi(\overline{x})$
- let ψ_n denote

$$\forall x_1 \forall x_2 \dots \forall x_{n+1} \left(\bigvee_{i \neq j} (x_i = x_j) \right)$$

- we set $\varphi_{\mathcal{M}} :\Leftrightarrow \psi_n \land \exists \overline{x} \varphi(\overline{x})$
- suppose $\mathcal{N} \models \varphi_{\mathcal{M}}$,
- by the previous theorem, \mathcal{M} is embeddable by an f into \mathcal{N} , moreover $|\mathcal{N}| \leq n$
- hence f is bijective, and thus f is an bijective, elementary embedding, or an isomorphism

Theory of a Structure

Corollary

for finite \mathcal{M} we have that $\mathcal{M} \cong \mathcal{N}$ if and only if $\mathcal{M} \equiv \mathcal{N}$

Fact

the corollary is false for infinite structures, which makes model theory for infinite structures interesting (and boring for finite ones)

Definition

theory of \mathcal{M}

the theory of a \mathcal{V} -structure \mathcal{M} is defined as

```
\mathsf{Th}(\mathcal{M}) = \{ \varphi \mid \mathcal{M} \models \varphi \text{ and } \varphi \text{ is a } \mathcal{V}\text{-sentence} \}
```

Definition

model

76/178

for any set Γ of \mathcal{V} -sentences, a model of Γ is a \mathcal{V} -structure \mathcal{M} such that $\mathcal{M} \models \Gamma$; the class of all models is denoted as Mod(Γ)

Definition

GM (Institute of

complete theory

 Γ is a complete \mathcal{V} -theory if for any \mathcal{V} -sentence φ , either φ or $\neg \varphi$ is in Γ and Γ does not contain φ and $\neg \varphi$

Theorem

for any \mathcal{V} -structure \mathcal{M} , Th (\mathcal{M}) is a complete theory

Definition consistent a set of sentences Γ is called consistent if no contradictions can be derived from it

Definition

theory

- a theory is any consistent set of sentences
- if T is a theory, then Mod(T) is called elementary class

Observation

- let T denote a theory, and call T maximal, if any proper superset is not consistent
- then a maximal theory is complete and vice versa

Model theory studies theories and models and the interaction between them. Understanding the theory of a structure lends insight into the structure. On the other hand, understanding the models of a theory lends insight into the theory

GM (Institute of Computer Science @ UIBK)

Logic (master program)