

Summary of Last Lecture

Definition

embedding

• let \mathcal{M} and \mathcal{N} be \mathcal{V} -structures, a function $f: \mathcal{M} \to \mathcal{N}$ preserves the \mathcal{V} -formula $\varphi(x_1, \ldots, x_n)$ if for each tuple a_1, \ldots, a_n in \mathcal{M}

 $\mathcal{M} \models \varphi(a_1, \ldots, a_n)$ implies $\mathcal{N} \models \varphi(f(a_1), \ldots, f(a_n))$

- if f preserves all V-formulas that are literals, then f is a (literal) embedding
- if f preserves all \mathcal{V} -formulas, then f is an elementary embedding

Lemma

embeddings preserve existential formulas

Lemma

if $f: \mathcal{M} \to \mathcal{N}$ is onto, then f is a literal embedding if and only if f is an elementary embedding

Isomorphism

Definition

isomorphism

- a bijective $f: \mathcal{M} \to \mathcal{N}$ is an isomorphism, if it preserves every formula
- if an isomorphism exists, then \mathcal{M} and \mathcal{N} are isomorphic ($\mathcal{M}\cong\mathcal{N}$)

Definition

substructure

80/178

 \mathcal{M} is substructure of \mathcal{N} ($\mathcal{M} \subseteq \mathcal{N}$) if

- **1** \mathcal{M} and \mathcal{N} are structures that have the same vocabulary
- **2** the universe of \mathcal{M} is a subset of the universe of \mathcal{N}
- 3 \mathcal{M} interprets the vocabulary in the same way as \mathcal{N}

Lemma

- existential formulas are preserved under extensions
- universal formulas are preserved under substructures

GM (Institute of Computer Science @ UIBK) Logic (master program)

Elementary Equivalence

Definition

elementarily equivalent if \mathcal{M} and \mathcal{N} model the same sentence, then \mathcal{M} and \mathcal{N} are elementarily equivalent $(\mathcal{M} \equiv \mathcal{N})$

Theorem

let \mathcal{V} be finite, for any finite $\mathcal{M} \exists$ formula $\varphi_{\mathcal{M}}$ such that for any finite \mathcal{V} -structure \mathcal{N} , $\mathcal{N} \models \varphi_{\mathcal{M}}$ if and only if $\mathcal{M} \cong \mathcal{N}$

Corollary

for finite \mathcal{M} we have that $\mathcal{M} \cong \mathcal{N}$ if and only if $\mathcal{M} \equiv \mathcal{N}$

Theories and Models

Content

introduction, propositional logic, semantics, formal proofs, resolution (propositional)

first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, resolution (first-order), completeness of first-order logic, properties of first-order logic

introduction to computability, introduction to complexity, finite model theory

beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle

GM (Institute of Computer Science @ UIBK) Logic (master program) Formal Proofs

Rules for Derivations

premise	conclusion	name
$\varphi\in\Gamma$	$\Gamma\vdash\varphi$	assumption
$\Gamma \vdash \varphi \land \Gamma \subset \Gamma'$	$\Gamma'\vdash\varphi$	monotonicity
$\Gamma\vdash\varphi$	$\Gamma\vdash\neg\neg\varphi$	double negation
$\Gamma\vdash\varphi,\Gamma\vdash\psi$	$\Gamma\vdash(\varphi\wedge\psi)$	\wedge -introduction
$\Gamma \vdash (\varphi \land \psi)$	$\Gamma\vdash\varphi$	\wedge -elimination
$\Gamma \vdash (\varphi \land \psi)$	$\Gamma \vdash (\psi \land \varphi)$	\wedge -symmetry
$\Gamma\vdash\varphi$	$\Gamma\vdash\varphi\vee\psi$	\lor -introduction
$\Gamma\vdash(\varphi\lor\psi),\Gamma\cup\{\varphi\}\vdash\theta,\Gamma\cup\{\psi\}\vdash\theta$	$\Gamma \vdash heta$	\lor -elimination
$\Gamma \vdash (\varphi \lor \psi)$	$\Gamma \vdash (\psi \lor \varphi)$	∨-symmetry
$\Gamma \cup \{\varphi\} \vdash \psi$	$\Gamma \vdash (arphi ightarrow \psi)$	\rightarrow -introduction
$\Gamma \vdash (arphi ightarrow \psi), \Gamma \vdash arphi$	$\Gamma\vdash\psi$	\rightarrow -elimination

84/178

More Rules

premise	conclusion	name
$\Gamma\vdash\varphi$	$\Gamma\vdash(\varphi)$	()-introduction
$\Gamma \vdash (\varphi)$	$\Gamma\vdash\varphi$	()-elimination
$\Gamma \vdash ((\varphi \land \psi) \land \theta)$	$\Gamma \vdash (\varphi \land \psi \land \theta)$	\wedge -parentheses
$\Gamma \vdash ((\varphi \lor \psi) \lor \theta)$	$\Gamma \vdash (\varphi \lor \psi \lor \theta)$	\lor -parentheses
$\Gamma \vdash (\varphi \lor \psi)$	$\Gamma \vdash \neg (\neg \varphi \land \neg \psi)$	\lor -definition
$\Gamma \vdash \neg (\neg \varphi \land \neg \psi)$	$\Gamma \vdash (\varphi \lor \psi)$	
$\Gamma \vdash (\varphi \rightarrow \psi)$	$\Gamma \vdash (\neg \varphi \lor \psi)$	\rightarrow -definition
$\Gamma \vdash (\neg \varphi \lor \psi)$	$\Gamma \vdash (\varphi \rightarrow \psi)$	
$\Gamma \vdash (\varphi \leftrightarrow \psi)$	$\Gamma dash (arphi o \psi) \wedge (\psi o arphi)$	$\leftrightarrow \text{-definition}$
$\Gamma dash (arphi o \psi) \wedge (\psi o arphi)$	$\Gamma \vdash (\varphi \leftrightarrow \psi)$	

GM (Institute of Computer Science @ UIBK) Logic (master program)

86/178

Yet More Rules

premise

conclusion

${\sf \Gamma}dash arphi(t)$	${\sf \Gamma} dash \exists x arphi(x)$	∃-introduction
$\Gammadash arphi(oldsymbol{c})$	$\Gamma dash orall x arphi(x)$	\forall -introduction
$\Gamma\vdash\varphi\to\psi$	$\Gamma dash \exists x arphi(x) ightarrow \exists x \psi(x)$	\exists -distribution
$\Gamma\vdash\varphi\to\psi$	$\Gamma dash orall x arphi(x) o orall x \psi(x)$	\forall -distribution
$F \vdash Q_1 x(Q_2 y arphi)$	$F \vdash Q_1 x Q_2 y \varphi$	parentheses rule
	$\Gamma \vdash t = t$	reflexivity
${\mathsf F} dash arphi(t), {\mathsf F} dash t = t'$	${\sf \Gamma} dash arphi(t')$	equality substitution

name

- t is a term
- c is constant $\notin \Gamma$
- $Q \in \{\forall, \exists\}$

extend by definition rules

Formal Proof

Definition

• a formal proof is a finite sequence of statements $\Gamma \vdash \varphi$

- each statement follows from previous ones, by the stated rules
- we say φ s derived from Γ if there is a formal proof of $\Gamma \vdash \varphi$

Theorem soundness if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$ Corollary if both $\{\varphi\} \vdash \psi$ and $\{\psi\} \vdash \varphi$ then $\varphi \equiv \psi$ provably equivalent Proof (of Theorem) by induction on the number of steps, for each rule one shows that the inference is sound GM (Institute of Computer Science @ UIBK) Logic (master program) 88/178 Case \exists -distribution suppose $\mathcal{M} \models \varphi \rightarrow \psi$ and $\mathcal{M} \models \exists x \varphi$, we show $\mathcal{M} \models \exists x \psi$ **1** x is not a free variable of φ hence $\varphi \equiv \exists x \varphi$, so from $\mathcal{M} \models \exists x \varphi$, we conclude $\mathcal{M} \models \varphi$ and from $\mathcal{M} \models \varphi \rightarrow \psi(x)$, we conclude $\mathcal{M} \models \psi(x)$; but then $\mathcal{M}_{\mathcal{C}} \models \psi(a)$ for $a \in \mathcal{V}(\mathcal{M})$, hence $\mathcal{M} \models \exists x \psi(x)$ **2** x is free variable of φ , but not of ψ assumption $\mathcal{M} \models \varphi(x) \rightarrow \psi$ asserts that $\mathcal{M} \models \varphi(a) \rightarrow \psi$ for all $a \in \mathcal{V}(\mathcal{M})$, since $\mathcal{M} \models \exists x \varphi(x)$, we obtain $\mathcal{M} \models \psi$ and thus $\mathcal{M} \models \exists x \psi$ 3 x is free in φ and ψ from $\mathcal{M} \models \varphi(x) \rightarrow \psi(x)$, we obtain $\mathcal{M} \models \varphi(a) \rightarrow \psi(a)$ for all $a \in \mathcal{V}(\mathcal{M})$, as $\mathcal{M} \models \exists x \varphi(x)$, we have $\mathcal{M} \models \varphi(c)$ for some $c \in \mathcal{V}(\mathcal{M})$, hence $\mathcal{M} \models \psi(c)$ and conclusively $\mathcal{M} \models \exists x \psi(x)$

formal proof

Theorem closure theorem let $\varphi(x_1, \ldots, x_n)$ be a formula and let $\forall x_1 \ldots \forall x_n \varphi(x_1, \ldots, x_n)$ its universal closure, then $\Gamma \vdash \varphi(x_1, \ldots, x_n)$ if and only if $\Gamma \vdash \forall x_1 \ldots \forall x_n \varphi(x_1, \ldots, x_n)$, where Γ is a set of sentences

Proof

• suppose $\Gamma \vdash \varphi(x)$ such that only the variable x occurs free

Logic (master program)

- then $\Gamma \vdash \varphi(c)$ for some fresh constant c
- hence $\Gamma \vdash \forall x \varphi(x)$ by \forall -introduction

GM (Institute of Computer Science @ UIBK) Formal Proofs

Theorem

let x, y be variables that do not occur in $\varphi(z)$

- $\forall x \varphi(x)$ and $\forall y \varphi(y)$ are provably equivalent
- $\exists x \varphi(x)$ and $\exists y \varphi(y)$ are provably equivalent

Definition

prenex normal form

• a formula φ is in prenex normal form if it has the form

$$\mathsf{Q}_1 x_1 \dots \mathsf{Q}_n x_n \psi \qquad \qquad \mathsf{Q}_i \in \{\forall, \exists\}$$

 ψ is quantifier-free

• if ψ is a conjunction of disjunctions of literals, we say φ is in conjunctive (prenex) normal form

Theorem

any first-order formula is transformable into conjunctive normal form

91/178