Logic (master program)

Georg Moser

Institute of Computer Science @ UIBK

Winter 2008

Summary of Last Lecture

Definition

- let \mathcal{M} and \mathcal{N} be \mathcal{V}-structures, a function $f: \mathcal{M} \rightarrow \mathcal{N}$ preserves the \mathcal{V}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ if for each tuple a_{1}, \ldots, a_{n} in \mathcal{M}

$$
\mathcal{M} \models \varphi\left(a_{1}, \ldots, a_{n}\right) \quad \text { implies } \quad \mathcal{N} \models \varphi\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)
$$

- if f preserves all \mathcal{V}-formulas that are literals, then f is a (literal) embedding
- if f preserves all \mathcal{V}-formulas, then f is an elementary embedding

Lemma

embeddings preserve existential formulas

Lemma

if $f: \mathcal{M} \rightarrow \mathcal{N}$ is onto, then f is a literal embedding if and only if f is an elementary embedding

Isomorphism

Definition

isomorphism

- a bijective $f: \mathcal{M} \rightarrow \mathcal{N}$ is an isomorphism, if it preserves every formula
- if an isomorphism exists, then \mathcal{M} and \mathcal{N} are isomorphic $(\mathcal{M} \cong \mathcal{N})$

Definition

\mathcal{M} is substructure of $\mathcal{N}(\mathcal{M} \subseteq \mathcal{N})$ if
I \mathcal{M} and \mathcal{N} are structures that have the same vocabulary
2 the universe of \mathcal{M} is a subset of the universe of \mathcal{N}
3 \mathcal{M} interprets the vocabulary in the same way as \mathcal{N}

Lemma

- existential formulas are preserved under extensions
- universal formulas are preserved under substructures

Elementary Equivalence

Definition

elementarily equivalent
if \mathcal{M} and \mathcal{N} model the same sentence, then \mathcal{M} and \mathcal{N} are elementarily equivalent $(\mathcal{M} \equiv \mathcal{N})$

Theorem

let \mathcal{V} be finite, for any finite $\mathcal{M} \exists$ formula $\varphi_{\mathcal{M}}$ such that for any finite \mathcal{V}-structure $\mathcal{N}, \mathcal{N} \models \varphi_{\mathcal{M}}$ if and only if $\mathcal{M} \cong \mathcal{N}$

Corollary

for finite \mathcal{M} we have that $\mathcal{M} \cong \mathcal{N}$ if and only if $\mathcal{M} \equiv \mathcal{N}$

Theories and Models

Definition
the theory of a \mathcal{V}-structure \mathcal{M} is defined as

$$
\operatorname{Th}(\mathcal{M})=\{\varphi \mid \mathcal{M} \models \varphi \text { and } \varphi \text { is a } \mathcal{V} \text {-sentence }\}
$$

Definition
complete theory
Γ is a complete \mathcal{V}-theory if for any \mathcal{V}-sentence φ, either φ or $\neg \varphi$ is in Γ and Γ does not contain φ and $\neg \varphi$

Theorem

for any \mathcal{V}-structure $\mathcal{M}, \operatorname{Th}(\mathcal{M})$ is a complete theory

Content

introduction, propositional logic, semantics, formal proofs, resolution (propositional)
first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, resolution (first-order), completeness of first-order logic, properties of first-order logic
introduction to computability, introduction to complexity, finite model theory
beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle

Rules for Derivations

premise	conclusion	name
$\varphi \in \Gamma$	$\Gamma \vdash \varphi$	assumption
$\Gamma \vdash \varphi \wedge \Gamma \subset \Gamma^{\prime}$	$\Gamma \vdash \varphi$	monotonicity
$\Gamma \vdash \varphi$	$\Gamma \vdash \neg \neg \varphi$	double negation
$\Gamma \vdash \varphi, \Gamma \vdash \psi$	$\Gamma \vdash(\varphi \wedge \psi)$	\wedge-introduction
$\Gamma \vdash(\varphi \wedge \psi)$	$\Gamma \vdash \varphi$	\wedge-elimination
$\Gamma \vdash(\varphi \wedge \psi)$	$\Gamma \vdash(\psi \wedge \varphi)$	\wedge-symmetry
$\Gamma \vdash \varphi$	$\Gamma \vdash \varphi \vee \psi$	\vee-introduction
$\Gamma \vdash(\varphi \vee \psi), \Gamma \cup\{\varphi\} \vdash \theta, \Gamma \cup\{\psi\} \vdash \theta$	$\Gamma \vdash \theta$	\vee-elimination
$\Gamma \vdash(\varphi \vee \psi)$	$\Gamma \vdash(\psi \vee \varphi)$	\vee-symmetry
$\Gamma \cup\{\varphi\} \vdash \psi$	$\Gamma \vdash(\varphi \rightarrow \psi)$	\rightarrow-introduction
$\Gamma \vdash(\varphi \rightarrow \psi), \Gamma \vdash \varphi$	$\Gamma \vdash \psi$	\rightarrow-elimination

More Rules

premise	conclusion	name
$\Gamma \vdash \varphi$	$\Gamma \vdash(\varphi)$	() -introduction
$\Gamma \vdash(\varphi)$	$\Gamma \vdash \varphi$	() -elimination
$\Gamma \vdash((\varphi \wedge \psi) \wedge \theta)$	$\Gamma \vdash(\varphi \wedge \psi \wedge \theta)$	\wedge-parentheses
$\Gamma \vdash((\varphi \vee \psi) \vee \theta)$	$\Gamma \vdash(\varphi \vee \psi \vee \theta)$	V-parentheses
$\Gamma \vdash(\varphi \vee \psi)$	$\Gamma \vdash \neg(\neg \varphi \wedge \neg \psi)$	\vee-definition
$\Gamma \vdash \neg(\neg \varphi \wedge \neg \psi)$	$\Gamma \vdash(\varphi \vee \psi)$	
$\Gamma \vdash(\varphi \rightarrow \psi)$	$\Gamma \vdash(\neg \varphi \vee \psi)$	\rightarrow-definition
$\Gamma \vdash(\neg \varphi \vee \psi)$	$\Gamma \vdash(\varphi \rightarrow \psi)$	
$\Gamma \vdash(\varphi \leftrightarrow \psi)$	$\Gamma \vdash(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$	\leftrightarrow-definition
$\Gamma \vdash(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$	$\Gamma \vdash(\varphi \leftrightarrow \psi)$	

Yet More Rules

premise	conclusion	name
$\Gamma \vdash \varphi(t)$	$\Gamma \vdash \exists x \varphi(x)$	\exists-introduction
$\Gamma \vdash \varphi(c)$	$\Gamma \vdash \forall x \varphi(x)$	\forall-introduction
$\Gamma \vdash \varphi \rightarrow \psi$	$\Gamma \vdash \exists x \varphi(x) \rightarrow \exists x \psi(x)$	\exists-distribution
$\Gamma \vdash \varphi \rightarrow \psi$	$\Gamma \vdash \forall x \varphi(x) \rightarrow \forall x \psi(x)$	\forall-distribution
$\Gamma \vdash \mathrm{Q}_{1} x\left(\mathrm{Q}_{2} y \varphi\right)$	$\Gamma \vdash \mathrm{Q}_{1} x \mathrm{Q}_{2} y \varphi$	parentheses rule
	$\Gamma \vdash t=t$	reflexivity
$\Gamma \vdash \varphi(t), \Gamma \vdash t=t^{\prime}$	$\Gamma \vdash \varphi\left(t^{\prime}\right)$	equality substitution

- t is a term
- c is constant $\notin \Gamma$
- $Q \in\{\forall, \exists\}$
extend by definition rules

Formal Proof

Definition

formal proof

- a formal proof is a finite sequence of statements $\Gamma \vdash \varphi$
- each statement follows from previous ones, by the stated rules
- we say φs derived from Γ if there is a formal proof of $\Gamma \vdash \varphi$

Theorem soundness
if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$
Corollary
if both $\underbrace{\{\varphi\} \vdash \psi \text { and }\{\psi\} \vdash \varphi}_{\text {provably equivalent }}$ then $\varphi \equiv \psi$
Proof (of Theorem)
by induction on the number of steps, for each rule one shows that the inference is sound

Case
ヨ-distribution
suppose $\mathcal{M} \models \varphi \rightarrow \psi$ and $\mathcal{M} \models \exists x \varphi$, we show $\mathcal{M} \models \exists x \psi$
$\boldsymbol{1} x$ is not a free variable of φ
hence $\varphi \equiv \exists x \varphi$, so from $\mathcal{M} \models \exists x \varphi$, we conclude $\mathcal{M} \models \varphi$ and from $\mathcal{M} \models \varphi \rightarrow \psi(x)$, we conclude $\mathcal{M} \models \psi(x)$; but then $\mathcal{M}_{C} \models \psi(a)$ for $a \in \mathcal{V}(\mathcal{M})$, hence $\mathcal{M} \models \exists x \psi(x)$

2 x is free variable of φ, but not of ψ
assumption $\mathcal{M} \models \varphi(x) \rightarrow \psi$ asserts that $\mathcal{M} \models \varphi(a) \rightarrow \psi$ for all $a \in \mathcal{V}(\mathcal{M})$, since $\mathcal{M} \models \exists x \varphi(x)$, we obtain $\mathcal{M} \models \psi$ and thus $\mathcal{M} \vDash \exists x \psi$
$3 x$ is free in φ and ψ
from $\mathcal{M} \models \varphi(x) \rightarrow \psi(x)$, we obtain $\mathcal{M} \models \varphi(a) \rightarrow \psi(a)$ for all $a \in \mathcal{V}(\mathcal{M})$, as $\mathcal{M} \models \exists x \varphi(x)$, we have $\mathcal{M} \models \varphi(c)$ for some $c \in \mathcal{V}(\mathcal{M})$, hence $\mathcal{M} \models \psi(c)$ and conclusively $\mathcal{M} \models \exists x \psi(x)$

Theorem closure theorem
let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula and let $\forall x_{1} \ldots \forall x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$ its universal closure, then $\Gamma \vdash \varphi\left(x_{1}, \ldots, x_{n}\right)$ if and only if $\Gamma \vdash \forall x_{1} \ldots \forall x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$, where Γ is a set of sentences

Proof

- suppose $\Gamma \vdash \varphi(x)$ such that only the variable x occurs free
- then $\Gamma \vdash \varphi(c)$ for some fresh constant c
- hence $\Gamma \vdash \forall x \varphi(x)$ by \forall-introduction

Theorem

let x, y be variables that do not occur in $\varphi(z)$

- $\forall x \varphi(x)$ and $\forall y \varphi(y)$ are provably equivalent
- $\exists x \varphi(x)$ and $\exists y \varphi(y)$ are provably equivalent

Definition

prenex normal form

- a formula φ is in prenex normal form if it has the form

$$
Q_{1} x_{1} \ldots Q_{n} x_{n} \psi \quad Q_{i} \in\{\forall, \exists\}
$$

ψ is quantifier-free

- if ψ is a conjunction of disjunctions of literals, we say φ is in conjunctive (prenex) normal form

Theorem

any first-order formula is transformable into conjunctive normal form

