gic	Summary of Last Lecture		
Logic (master program) Georg Moser Institute of Computer Science @ UIBK Winter 2008	premise $\Gamma \vdash \varphi(t)$ $\Gamma \vdash \varphi(c)$ $\Gamma \vdash \varphi \rightarrow \psi$ $\Gamma \vdash \varphi \rightarrow \psi$ $\Gamma \vdash Q_1 x (Q_2 y \varphi)$ $\Gamma \vdash \varphi(t), \Gamma \vdash t = t'$ • t is a term • c is constant $\notin \Gamma$ • Q $\in \{\forall, \exists\}$	conclusion $\Gamma \vdash \exists x \varphi(x) \\ \Gamma \vdash \forall x \varphi(x) \rightarrow \exists x \psi(x) \\ \Gamma \vdash \forall x \varphi(x) \rightarrow \forall x \psi(x) \\ \Gamma \vdash Q_1 x Q_2 y \varphi \\ \Gamma \vdash t = t \\ \Gamma \vdash \varphi(t') $ extend by definition rules	name ∃-introduction ∀-introduction ∃-distribution ∀-distribution parentheses rule reflexivity equality substitution
M (institute of Computer Science & UIBK) Logic (master program) 1/178 Soundness Theorem Definition formal proof • a formal proof is a finite sequence of statements $\Gamma \vdash \varphi$ • • • each statement follows from previous ones, by the stated rules • we say φ is derived from Γ if there is a formal proof of $\Gamma \vdash \varphi$ Theorem soundness if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$ Soundness Theorem closure theorem let $\varphi(x_1, \dots, x_n)$ be a formula and let $\forall x_1 \dots \forall x_n \varphi(x_1, \dots, x_n)$ its universal closure, then $\Gamma \vdash \varphi(x_1, \dots, x_n)$ if and only if $\Gamma \vdash \forall x_1 \dots \forall x_n \varphi(x_1, \dots, x_n)$, where Γ is a set of sentences	GM (Institute of Computer Science @ UIBK) Summary Theorem let x, y be variables that • $\forall x \varphi(x)$ and $\forall y \varphi(y)$ • $\exists x \varphi(x)$ and $\exists y \varphi(y)$ Definition • a formula φ s in pr Q ₁ y ψ is quantifier-free • if ψ is a conjunction conjunctive (prenex) Theorem any first-order formula i	Logic (master program) at do not occur in $\varphi(z)$ b) are provably equivalent c) are provably equivalent enex normal form if it has $x_1 \dots Q_n x_n \psi$ Q on of disjunctions of literals c) normal form s transformable into conju	prenex normal form the form $i \in \{\forall, \exists\}$ s, we say φ is in nctive normal form

Content

Content

introduction, propositional logic, semantics, formal proofs, resolution (propositional)

first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, completeness of first-order logic, properties of first-order logic, resolution (first-order)

introduction to computability, introduction to complexity, finite model theory

beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle

Skolemisation

Definition

a sentence is in Skolem normal form (SNF for short), if it is universal and in CNF $% \left({{\rm{SNF}}} \right)$

Definition

given a sentence $\varphi,$ we define its Skolemisation φ^{S} as follows

- 1 transform φ into a CNF φ' such that $\varphi' = Q_1 x_1 \cdots Q_m x_m \psi(x_1, \dots, x_m)$
- **2** repeatedly replace ϕ

$$\forall x_1 \cdots \forall x_{i-1} \exists x_i \mathsf{Q}_{i+1} x_{i+1} \cdots \mathsf{Q}_m x_m \ \chi(x_1, \dots, x_m)$$

by $\mathbf{s}(\phi)$

$$\forall x_1 \cdots \forall x_{i-1} \mathsf{Q}_{i+1} x_{i+1} \cdots \mathsf{Q}_m x_m \ \chi(x_1, \ldots, \mathbf{f}(x_1, \ldots, x_{i-1}), \ldots, x_m)$$

where f denotes a fresh function symbol of arity i - 1

Herbrand Theory	Herbrand Theory
 Definition the Herbrand vocabulary V_Γ for Γ is defined as follows: V₀ denotes the symbols occurring in Γ if V₀ contains a constant V_Γ = V₀, otherwise V_Γ = V₀ ∪ {c} for some constant c Definition the Herbrand universe H(Γ) for Γ is the Herbrand universe for V_Γ M is a Herbrand model of Γ if M is a Herbrand structure that is also a model of Γ Heorem It Γ be set of equality-free sentences in SNF; then Γ is satisfiable if and only if Γ has a Herbrand model 	Proof suppose Γ is satisfiable, let \mathcal{N} be a \mathcal{V}_{Γ} -structure that models each $\varphi \in \Gamma$ • we define a Herbrand structure \mathcal{M} • the universe of \mathcal{M} is the Herbrand universe $H(\Gamma)$ • $\forall R \in \mathcal{V}_{\Gamma}$ $(t_1, \dots, t_n) \in R^{\mathcal{M}}$ if and only if $\mathcal{N} \models R(t_1, \dots, t_n)$ • \forall quantifier- and equality-free sentences ψ $\mathcal{M} \models \psi$ if and only if $\mathcal{N} \models \psi$ follows by induction on ψ • \forall equality-free SNF sentences ψ if $\mathcal{N} \models \psi$ then $\mathcal{M} \models \psi$ follows by induction on the number of (universal) quantifiers in ψ
CM (Institute of Computer Science @ IIIBK) Logic (master program) 100/178	GM (Institute of Computer Science @ UIBK) Logic (master program) 101/178
Herbrand Theory	Herbrand Theory
Theorem let φ be an SNF-sentence, then φ is satisfiable if and only if $\exists \varphi'$ such that φ' has a Herbrand model	Content
Proof $\exists \varphi_E$ such that φ_E is satisfiable if and only φ is satisfiable and φ_E doesn't contain equality signs Definition Herbrand Method the following procedure certifies unsatisfiability of first-order formuals • let φ be a formula in SNF $\forall x_1 \cdots \forall x_n \psi(x_1, \dots, x_n)$ where ψ is quantifer-free, define $E(\varphi)$ as the set $\{\psi(t_1, \dots, t_n) \mid t_1, \dots, t_n \in H(\varphi)\}$	 introduction, propositional logic, semantics, formal proofs, resolution (propositional) first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, completeness of first-order logic, properties of first-order logic, resolution (first-order) introduction to computability, introduction to complexity, finite model theory beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle
• φ is satisfiable if and only if $E(\varphi_E)$ is satisfiable • use propositional resolution to verify unsatisfiablity of $E(\varphi_E)$	

Gödel's Completeness Theorem

every model has a theory and every theory has a model

recall

• a theory is a consistent set of formulas

every model has a theory

 $\mathsf{Th}(\mathcal{M})$ is consistent

- a set of formulas Γ is consistent if no contradiction follows from Γ

every theory has a model

every consistent set of sen-

tences is satisfiable

• the theory of \mathcal{M} is the set $\mathsf{Th}(\mathcal{M}) = \{\varphi \text{ a sentence } | \mathcal{M} \models \varphi\}$

Gödel's Completeness Theorem

Proposition

if Γ is satisfiable then Γ is consistent

Proof

- if Γ is satisfiable, there exists \mathcal{M} , such that $\mathcal{M} \models \varphi \; \forall \; \varphi \in \Gamma$
- $\mathsf{Th}(\mathcal{M})$ is a complete theory, hence consistent by definition
- $\Gamma \subseteq \mathsf{Th}(\mathcal{M})$, hence consistent

Theorem

let Γ be countable set of sentences, if Γ consistent then Γ is satisfiable

Proof Plan

- let $C = \{c_1, c_2, c_3, \dots\}$ set of fresh constants and let $\mathcal{V}^+ = \mathcal{V} \cup C$
- we define a complete $\mathcal{V}^+\text{-theory } \mathcal{T}^+$ with $\Gamma\subseteq \mathcal{T}^+$ and
- \forall sentences $\exists x \varphi(x) \in T^+$, we have $\varphi(c_i) \in T^+$ for some $c_i \in C$

based on this we construct a model \mathcal{M}^+ of \mathcal{T}^+ and hence of Γ

tute of Computer Science @ UIBK GM (Institute of Computer Science @ UIBK) Logic (master program del's Completeness Theorem Gödel's Completeness Theoren Definition Claim T^+ the set T^+ is a complete theory, such that (i) $\Gamma \subseteq T^+$ and (ii) \forall sentences we define T^+ in stages $\exists x \varphi(x) \in T^+$, we have $\varphi(c_i) \in T^+$ for some $c_i \in C$ 1 set $T_0 = \Gamma$ **2** enumerate the set of all \mathcal{V}^+ -sentences Proof of Claim (naturally this enumeration includes the sentences in Γ) • T^+ is consistent; this follows from the consistence of each T_m • T^+ is a complete theory such that $\Gamma \subseteq T^+$ and property (ii) holds **3** define T_{m+1} based on T_m and consider sentence φ_{m+1} ; assume T_m has only used finitely many constants from Cfollow by construction 4 if $T_m \cup \{\neg \varphi_{m+1}\}$ is consistent, set $T_{m+1} = T_m \cup \{\neg \varphi_{m+1}\}$ Definition 5 if $T_m \cup \{\neg \varphi_{m+1}\}$ is not consistent, then $T_m \cup \{\varphi_{m+1}\}$ is consistent \mathcal{M}^+ we define \mathcal{M}^+ as a \mathcal{V}^+ -structure such that **6** in this case suppose $\varphi_{m+1} \neq \exists x \psi(x)$, then $T_{m+1} = T_m \cup \{\varphi_{m+1}\}$ **1** the universe of \mathcal{M}^+ is a set U^+ of closed \mathcal{V}^+ -terms 7 otherwise $T_{m+1} = T_m \cup \{\varphi_{m+1}\} \cup \{\psi(c_i)\}$ for fresh $c_i \in C$ **2** in U^+ we identify all terms s, t such that $T^+ \vdash s = t$ finally let $T^+ = \bigcup_{m \ge 0} T_m$ **3** set $c^{\mathcal{M}^+} = t \in U^+$, whenever $T^+ \vdash t = c$ 4 set $f^{\mathcal{M}^+}(t_1,\ldots,t_n) = s$, whenever $T^+ \vdash f(t_1,\ldots,t_n) = s$ Claim **5** set $(t_1,\ldots,t_n) \in R^{\mathcal{M}^+}$, if $T^+ \vdash R(t_1,\ldots,t_n)$ $\forall m \ge 0$ T_m is consistent

Gödel's Completeness Theore

Claim for any sentence $\mathcal{M}^+ \models \varphi$ if and only if $\mathcal{T}^+ \vdash \varphi$

Proof of Claim by easy induction on φ

Corollary

downward Löwenheim-Skolem

let Γ be a countable set of formulas, if Γ is consistent, then Γ has a countable model

Corollary

compactness

108/178

a countable set of formulas is satisfiable if and only if every finite subset is satisfiable

Corollary

```
for any countable set of sentences \Gamma, \Gamma \vdash \varphi if and only if \Gamma \models \varphi
```

GM (Institute of Computer Science @ UIBK)

Logic (master program)