Summary of Last Lecture

Logic (master program)

Georg Moser

Institute of Computer Science @ UIBK

Proposition

if Γ is satisfiable then Γ is consistent

Theorem

let Γ be countable set of sentences, if Γ consistent then Γ is satisfiable

Proof Plan

- let $C=\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$ set of fresh constants and let $\mathcal{V}^{+}=\mathcal{V} \cup C$
- we define a complete \mathcal{V}^{+}-theory T^{+}with $\Gamma \subseteq T^{+}$and
- \forall sentences $\exists x \varphi(x) \in T^{+}$, we have $\varphi\left(c_{i}\right) \in T^{+}$for some $c_{i} \in C$
based on this we construct a model \mathcal{M}^{+}of T^{+}and hence of Γ

Winter 2008

Definition
we define T^{+}in stages
$\boldsymbol{1}$ set $T_{0}=\Gamma$
2 enumerate the set of all \mathcal{V}^{+}-sentences

$$
\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots
$$

3 define T_{m+1} based on T_{m} and consider sentence φ_{m+1}; assume T_{m} has only used finitely many constants from C

44 if $T_{m} \cup\left\{\neg \varphi_{m+1}\right\}$ is consistent, set

$$
T_{m+1}=T_{m} \cup\left\{\neg \varphi_{m+1}\right\}
$$

5 if $T_{m} \cup\left\{\neg \varphi_{m+1}\right\}$ is not consistent, then $T_{m} \cup\left\{\varphi_{m+1}\right\}$ is consistent
$\boldsymbol{\sigma}$ in this case suppose $\varphi_{m+1} \neq \exists x \psi(x)$, then

$$
T_{m+1}=T_{m} \cup\left\{\varphi_{m+1}\right\}
$$

otherwise $T_{m+1}=T_{m} \cup\left\{\varphi_{m+1}\right\} \cup\left\{\psi\left(c_{i}\right)\right\}$ for fresh $c_{i} \in C$
finally let $T^{+}=\bigcup_{m \geqslant 0} T_{m}$

Claim

the set T^{+}is a complete theory, such that (i) $\Gamma \subseteq T^{+}$and (ii) \forall sentences $\exists x \varphi(x) \in T^{+}$, we have $\varphi\left(c_{i}\right) \in T^{+}$for some $c_{i} \in C$

Proof of Claim

- T^{+}is consistent; this follows from the consistence of each T_{m}
- T^{+}is a complete theory such that $\Gamma \subseteq T^{+}$and property (ii) holds follow by construction

Definition

we define \mathcal{M}^{+}as a \mathcal{V}^{+}-structure such that
1 the universe of \mathcal{M}^{+}is a set U^{+}of closed \mathcal{V}^{+}-terms
$\boxed{2}$ in U^{+}we identify all terms s, t such that $T^{+} \vdash s=t$
3 set $c^{\mathcal{M}^{+}}=t \in U^{+}$, whenever $T^{+} \vdash t=c$
4 set $f^{\mathcal{M}^{+}}\left(t_{1}, \ldots, t_{n}\right)=s$, whenever $T^{+} \vdash f\left(t_{1}, \ldots, t_{n}\right)=s$
5 set $\left(t_{1}, \ldots, t_{n}\right) \in R^{\mathcal{M}^{+}}$, if $T^{+} \vdash R\left(t_{1}, \ldots, t_{n}\right)$

Claim

for any sentence $\mathcal{M}^{+} \models \varphi$ if and only if $T^{+} \vdash \varphi$

Corollary

downward Löwenheim-Skolem
let Γ be a countable set of formulas, if Γ is consistent, then Γ has a countable model

Corollary

compactness
a countable set of formulas is satisfiable if and only if every finite subset is satisfiable

Corollary
for any countable set of sentences $\Gamma, \Gamma \vdash \varphi$ if and only if $\Gamma \models \varphi$

Homework

- Give a (correct) proof of "Corollary" 3.8.
- Exercise 3.7.
- Give a (correct) proof of "Corollary" 3.10.
- Exercise 3.19.
- Exercise 3.21 .

Content

introduction, propositional logic, semantics, formal proofs, resolution (propositional)
first-order logic, semantics, structures, theories and models, formal proofs, Herbrand theory, completeness of first-order logic, properties of first-order logic, resolution (first-order)
introduction to computability, introduction to complexity, finite model theory
beyond first order: modal logics in a general setting, higher-order logics, introduction to Isabelle

Resolution (first-order)

Example

consider the following formula φ (over vocabulary $\mathcal{V}=\{a, b, c, d\}$)

$$
(c \neq d) \wedge(b=d) \wedge((a=d) \rightarrow(a=c)) \wedge((a=b) \vee(a=d))
$$

Question

is φ satisfiable?
Answer
no! observe

$$
\begin{array}{r}
\{(a=b) \vee(a=d),(b=d)\} \models(a=d) \\
\{(a=d),((a=d) \rightarrow(a=c))\} \models(c=d)
\end{array}
$$

Question

how to show this automatically?

Paramodulation

Definition
(ground) paramodulation

$$
\frac{C \vee s=t \quad D \vee u[s]=v}{C \vee D \vee u[t]=v}
$$

Example

consider the formulas in CNF

$$
\left.\begin{array}{ll}
\begin{array}{ll}
c \neq d & b=d \\
(a \neq d) \vee(a=c) & (a=b) \vee(a=d)
\end{array} \\
\frac{b=d}{}(a=d) \vee(a=b) \vee(a=d)
\end{array}\right]
$$

Definition

 most general unifier- a substitution σ is a mapping from variables to terms, denoted as

$$
\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}
$$

- a substitution σ is more general than τ, if $\exists \rho$
such that $\sigma \rho=\tau$
- a unifer σ of terms s and t is a substitution such that $s \sigma=t \sigma$
- a unifer σ (of s, t) is most general if σ is more general than any other unifier (of s, t)

Definition

- \square is a clause
- literals are clauses
- if C, D are clauses, then $C \vee D$ is a clause
we use the equivalences $C \vee \square \vee D \equiv C \vee D$, $\square \vee \square \equiv \square$

Definition

factoring (ordered, equality)

$$
\frac{C \vee A \vee B}{C \sigma \vee A \sigma} \quad \frac{C \vee s=t \vee s^{\prime}=t^{\prime}}{C \sigma \vee t \sigma \neq t^{\prime} \sigma \vee s^{\prime} \sigma=t^{\prime} \sigma}
$$

- σ is mgu of A and B or mgu of s and s^{\prime}

Definition

resolution (equality, standard)

$$
\frac{C \vee s \neq t}{C \sigma}
$$

$$
\frac{C \vee P\left(s_{1}, \ldots, s_{n}\right) \quad D \vee \neg P\left(t_{1}, \ldots, t_{n}\right)}{C \sigma \vee D \sigma}
$$

- σ is mgu of s and t or of $P\left(s_{1}, \ldots, s_{n}\right), P\left(t_{1}, \ldots, t_{n}\right)$ respectively

Observation

factoring is only necessary for positive atoms

Example

Theorem

paramodulation is sound and complete

Definition (informal)

superposition calculus

- extend the above rules with an order \succ on terms and literals
- apply operations only on maximal literals and
apply superposition only to equations $s=t$ if $s \succ t$
Theorem
superposition is sound, complete, and can be efficiently implemented

