
OLCmputational
gic

Logic (master program)

Georg Moser

Institute of Computer Science @ UIBK

Winter 2008

GM (Institute of Computer Science @ UIBK) Logic (master program) 1/178

Summary

Summary of Last Lecture

Definition superposition (right, left)

C ∨ s = t D ∨ A[s ′]
Cσ ∨ Dσ ∨ A[t]σ

C ∨ s = t D ∨ ¬A[s ′]
Cσ ∨ Dσ ∨ ¬A[t]σ

• σ is mgu of s and s ′

• s ′ is not a variable

Definition factoring (ordered, equality)

C ∨ A ∨ B
Cσ ∨ Aσ

C ∨ s = t ∨ s ′ = t ′
Cσ ∨ tσ 6= t ′σ ∨ s ′σ = t ′σ

• σ is mgu of A and B, or mgu of s and s ′, respectively

GM (Institute of Computer Science @ UIBK) Logic (master program) 121/178

Summary

Definition resolution (equality, standard)

C ∨ s 6= t

Cσ

C ∨ P(s1, . . . , sn) D ∨ ¬P(t1, . . . , tn)

Cσ ∨ Dσ

• σ is mgu of s and t or of P(s1, . . . , sn), P(t1, . . . , tn) respectively

Observation
factoring is only necessary for positive atoms

Theorem

• paramodulation is sound and complete

• superposition is sound, complete, and can be efficiently implemented

GM (Institute of Computer Science @ UIBK) Logic (master program) 122/178

Summary

Content

introduction, propositional logic, semantics, formal proofs, resolution
(propositional)

first-order logic, semantics, structures, theories and models, formal proofs,
Herbrand theory, completeness of first-order logic, properties of first-order
logic, resolution (first-order)

introduction to computability, introduction to complexity, finite model
theory

beyond first order: modal logics in a general setting, higher-order logics,
introduction to Isabelle

GM (Institute of Computer Science @ UIBK) Logic (master program) 123/178



Summary

Computability Theory

We refer to problems as decidable or undecidable accord-
ing to whether or not there exists an algorithm that solves
the problem. Computability theory considers undecidable
problems and the brink between the undecidable and the
decidable.

GM (Institute of Computer Science @ UIBK) Logic (master program) 124/178

Characterisation of Computable Functions

Characterisation of Computable Functions

Example
consider

• the zero function Z(x) = 0

• the successor function s(x) = x + 1

• the projection functions pn
i (x1, x2, . . . , xn) = xi

these functions are certainly computable

Definition basic functions
the functions Z, s, pn

i are called basic functions

GM (Institute of Computer Science @ UIBK) Logic (master program) 125/178

Characterisation of Computable Functions

Example
consider

• a computable function f

• a computable function g

then the composition h(x) = f (g(x)) is certainly computable

Definition closed under composition
let S be a set of functions on N and suppose

• ∀ h : Nm → N in S
• ∀ 1 6 i 6 m gi : Nn → N in S

the function defined as:

f (x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is contained in S, then S is closed under composition

GM (Institute of Computer Science @ UIBK) Logic (master program) 126/178

Characterisation of Computable Functions

Example
consider a function f defined by induction

• f (0) = 1

• f (x + 1) = f (x) · (x + 1)

then f is certainly computable

Definition closed under primitive recursion
let S be a set of functions on N and suppose

• ∀ h : Nn−1 → N in S n > 0

• ∀ g : Nn+1 → N in S
the function defined as:

f (0, x2, . . . , xn) = h(x2, . . . , xn)

f (x1 + 1, . . . , xn) = g(x1, . . . , xn, f (x1, . . . , xn))

is contained in S, then S is closed under primitive recursion

GM (Institute of Computer Science @ UIBK) Logic (master program) 127/178



Characterisation of Computable Functions

Primitive Recursive Functions

Definition
the primitive recursive functions are the smallest set containing the basic
functions that is closed under composition and primitive recursion

Example
the following function are primitive recursive

• the addition function a(x , y) = x + y

• the predecessor function p(x) = x ·− 1

• the (modified) subtraction function sub(x , y) = x ·− y

• the multiplication function m(x , y) = x · y
• the exponentiation function exp(x , y) = xy

Proposition
given a polynomial p(x) with natural numbers as coefficients, then p(x) is
primitive recursive

GM (Institute of Computer Science @ UIBK) Logic (master program) 128/178

Characterisation of Computable Functions

Definition closed under bounded sums
S is closed under bounded sums if

• ∀ f : Nn → N
the function sumf (y , x2, . . . , xn) =

∑
z<y (f (z , x2, . . . , xn)) is in S

Proposition
the set of primitive recursive functions is closed under bounded sums

Proof
let f (x1, . . . , xn) be primitive recursive

• h1(x2, . . . , xn) = 0

• h2(x1, . . . , xn, xn+1) = f (x1, . . . , xn) + xn+1

• h1, h2 are primitive recursive; so is the function g :

g(0, x2, . . . , xn) = h1(x2, . . . , xn) = 0

g(x1 + 1, x2, . . . , xn) = h2(x1, x2, . . . , g(x1, x2, . . . , xn))

• clearly g(y , x2, . . . , xn) = sumf (y , x2, . . . , xn)

GM (Institute of Computer Science @ UIBK) Logic (master program) 129/178

Recursive Functions

Recursive Functions

Definition closed under unbounded search
let S be a set of functions on N and suppose

• ∀ f : Nn+1 → N in S
the function defined as:

µf (x1, . . . , xn, y) =

z
∀ y 6 z f (~x , y) is defined and
z = min{v | f (~x , v) = 0}

undefined otherwise

is contained in S, then S is closed under unbounded search

Definition
the set of recursive functions is the smallest set containing the primitive
recursive functions that is closed under unbounded search

GM (Institute of Computer Science @ UIBK) Logic (master program) 130/178

Recursive Functions

Example
the Ackermann function

ack(0, n) = n + 1 ack(n + 1,m + 1) = ack(n, ack(n + 1,m))

ack(n + 1, 0) = ack(n, 1)

is a total non-primitive recursive function that is recursive

Theorem Kleene

• every (total) recursive function f is computable by a (total) TM and
vice versa

• the n-ary recursive functions are recursively enumerable:

ϕn
0, ϕ

n
1, ϕ

n
2, ϕ

n
3, . . .

Church-Turing Thesis
f is computable = f TM computable = f is recursive

GM (Institute of Computer Science @ UIBK) Logic (master program) 131/178



Computable Sets and Relations

Computable Sets and Relations

Definition characteristic function
the characteristic function χA of A ⊆ Nn:

χA(x1, . . . , xn) =

{
1 (x1, . . . , xn) ∈ A

0 (x1, . . . , xn) 6∈ A

Example
consider the relation x < y

χ<(x , y) =

{
1 x < y

0 otherwise

χ< is primitive recursive: χ<(x , y) = 1 ·− (1 ·− (y ·− x))

Definition
set A ⊆ Nn is called
• primitive recursive if χA is primitive recursive

• recursive if χA is recursive

GM (Institute of Computer Science @ UIBK) Logic (master program) 132/178

Computable Sets and Relations

let N = (N,+, ·, 0, 1) denote the structure with domain N and vocabulary
Var = {+, ·, 0, 1}

Proposition
if A is definable by a quantifier-free Var -formula, then A is primitive
recursive

Proof
let ϕA(x1, . . . , xn) be a Var -formula

• assume θ(~x) and ψ(~x) are formulas and define
primitive recursive subsets B and C

• χB , χC are primitive recursive

• if ϕA(~x) ≡ ¬θ(~x) then

χA(~x) = 1 ·− χB

holds

• hence χA is primitive recursive, thus A is

GM (Institute of Computer Science @ UIBK) Logic (master program) 133/178

Computable Sets and Relations

• if ϕA(~x) ≡ θ(~x) ∧ ψ(~x) then

χA(~x) = χB(~x) · χC (~x)

holds

• hence A is primitive recursive

this concludes the step case, now we consider the base case

• each Var -term defines a polynomial with naturals as coefficients

• the relation p(~x) = q(~x) is primitive recursive for polynomials p, q

• as x < y is primitive recursive
¬(x < y) ≡ y 6 x is primitive recursive

• x = y :⇔ x 6 y ∧ y 6 x is primitive recursive

• let χeq(p(~x), q(~x)) denote the induced characteristic function

• if ϕA(~x) ≡ s = t then

χA(~x) = χeq(p(~x), q(~x))

holds if p(~x), q(~x) are defined by s, t

GM (Institute of Computer Science @ UIBK) Logic (master program) 134/178


