

Characterisation of Computable Functions Example consider • the zero function $Z(x) = 0$ • the successor function $s(x) = x + 1$ • the projection functions $p_i^n(x_1, x_2,, x_n) = x_i$ these functions are certainly computable Definition the functions Z, s, p_i^n are called basic functions
Example consider • the zero function $Z(x) = 0$ • the successor function $s(x) = x + 1$ • the projection functions $p_i^n(x_1, x_2,, x_n) = x_i$ these functions are certainly computable Definition basic functions the functions Z, s, p_i^n are called basic functions
(Institute of Computer Science @ UIBK)Logic (master program)125/178acterisation of Computable FunctionsExample consider a function f defined by induction• $f(0) = 1$ • $f(x + 1) = f(x) \cdot (x + 1)$
then f is certainly computable
Definitionclosed under primitive recursionlet S be a set of functions on N and suppose• $\forall h: \mathbb{N}^{n-1} \to \mathbb{N}$ in S• $\forall g: \mathbb{N}^{n+1} \to \mathbb{N}$ in Sthe function defined as:
$f(0, x_2, \dots, x_n) = h(x_2, \dots, x_n)$ $f(x_1 + 1, \dots, x_n) = g(x_1, \dots, x_n, f(x_1, \dots, x_n))$ is contained in S, then S is closed under primitive recursion

Characterisation of Computable Functions	Characterisation of Computable Functions
Primitive Recursive Functions Definition the primitive recursive functions are the smallest set containing the basic functions that is closed under composition and primitive recursion	$ \begin{array}{ll} \text{Definition} & \text{closed under bounded sums} \\ \mathcal{S} \text{ is closed under bounded sums if} \\ \bullet \ \forall \ f \colon \mathbb{N}^n \to \mathbb{N} \\ \text{the function } \sup_f(y, x_2, \dots, x_n) = \sum_{z < y} (f(z, x_2, \dots, x_n)) \text{ is in } \mathcal{S} \end{array} $
Example the following function are primitive recursive • the addition function $a(x, y) = x + y$ • the predecessor function $p(x) = x - 1$ • the (modified) subtraction function $sub(x, y) = x - y$ • the multiplication function $m(x, y) = x \cdot y$ • the exponentiation function $exp(x, y) = x^y$ Proposition given a polynomial $p(x)$ with natural numbers as coefficients, then $p(x)$ is primitive recursive	Proposition the set of primitive recursive functions is closed under bounded sums Proof let $f(x_1,, x_n)$ be primitive recursive • $h_1(x_2,, x_n)$ be primitive recursive • $h_1(x_2,, x_n) = 0$ • $h_2(x_1,, x_n, x_{n+1}) = f(x_1,, x_n) + x_{n+1}$ • h_1, h_2 are primitive recursive; so is the function g : $g(0, x_2,, x_n) = h_1(x_2,, x_n) = 0$ $g(x_1 + 1, x_2,, x_n) = h_2(x_1, x_2,, g(x_1, x_2,, x_n))$ • clearly $g(y, x_2,, x_n) = \text{sum}_f(y, x_2,, x_n)$
CM (Institute of Computer Science @ IIIBK) Logic (master program) 128/178	CM (Institute of Computer Science @ IIIBK) Loric (master program) 120/178
GM (Institute of Computer Science @ UIBK) Logic (master program) 128/178	GM (Institute of Computer Science @ UIBK) Logic (master program) 129/178
CM (Institute of Computer Science @ UBK) Logic (master program) 128/178 Recursive Functions Closed under unbounded search let S be a set of functions on N and suppose $\forall f : \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ in S the function defined as: $ \forall y \leq z \ f(\vec{x}, y) \text{ is defined and } z = \min\{v \mid f(\vec{x}, v) = 0\}$ undefined otherwise is contained in S, then S is closed under unbounded search	GM (Institute of Computer Science @ UIBK) Logic (master program) 129/178 Recursive Functions Example the Ackermann function ack(0, n) = n + 1 ack(n + 1, m + 1) = ack(n, ack(n + 1, m)) ack(n + 1, 0) = ack(n, 1) is a total non-primitive recursive function that is recursive Kleene • every (total) recursive function f is computable by a (total) TM and vice versa • the <i>n</i> -ary recursive functions are recursively enumerable:

Computable Sets and Relation

Computable Sets and Relations

Definition

the characteristic function χ_A of $A \subseteq \mathbb{N}^n$:

$$\boldsymbol{\chi}_{\boldsymbol{\mathcal{A}}}(x_1,\ldots,x_n) = \begin{cases} 1 & (x_1,\ldots,x_n) \in \boldsymbol{\mathcal{A}} \\ 0 & (x_1,\ldots,x_n) \notin \boldsymbol{\mathcal{A}} \end{cases}$$

Example

consider the relation x < y

$$\chi_<(x,y) = egin{cases} 1 & x < y \ 0 & ext{otherwise} \end{cases}$$

 $\chi_{<}$ is primitive recursive: $\chi_{<}(x,y) = 1 \div (1 \div (y \div x))$

Definition

set $A \subseteq \mathbb{N}^n$ is called

- primitive recursive if χ_A is primitive recursive
- recursive if χ_A is recursive

Computable Sets and Relations

let $\bm{N}=(\mathbb{N},+,\cdot,0,1)$ denote the structure with domain \mathbb{N} and vocabulary $\mathcal{V}_{ar}=\{+,\cdot,0,1\}$

Proposition

if A is definable by a quantifier-free \mathcal{V}_{ar} -formula, then A is primitive recursive

Proof

characteristic function

let $\varphi_A(x_1, \ldots, x_n)$ be a \mathcal{V}_{ar} -formula

- assume θ(x
 ⁱ) and ψ(x
 ⁱ) are formulas and define primitive recursive subsets B and C
- χ_B , χ_C are primitive recursive
- if $\varphi_A(\vec{x}) \equiv \neg \theta(\vec{x})$ then

$$\chi_A(\vec{x}) = 1 \div \chi_B$$

Logic (master program

holds

GM (Institute of Computer Science @ UIBK)

• hence χ_A is primitive recursive, thus A is

GM (Institute of Computer Science @ UIBK) Computable Sets and Relations

• if $\varphi_A(\vec{x}) \equiv \theta(\vec{x}) \land \psi(\vec{x})$ then

 $\chi_A(\vec{x}) = \chi_B(\vec{x}) \cdot \chi_C(\vec{x})$

holds

• hence A is primitive recursive

this concludes the step case, now we consider the base case

- each \mathcal{V}_{ar} -term defines a polynomial with naturals as coefficients

Logic (master program

- the relation $p(\vec{x}) = q(\vec{x})$ is primitive recursive for polynomials p, q
- as *x* < *y* is primitive recursive
 - $\neg(x < y) \equiv y \leqslant x$ is primitive recursive
- $x = y :\Leftrightarrow x \leqslant y \land y \leqslant x$ is primitive recursive
- let $\chi_{eq}(p(\vec{x}), q(\vec{x}))$ denote the induced characteristic function
- if $\varphi_A(\vec{x}) \equiv \mathbf{s} = \mathbf{t}$ then

$$\chi_{\mathcal{A}}(\vec{x}) = \chi_{eq}(p(\vec{x}), q(\vec{x}))$$

holds if $p(\vec{x})$, $q(\vec{x})$ are defined by s, t

Logic (master program)

134/1