
University of Innsbruck Institute of Computer Science
1st Exam February 5, 2010

Functional Programming WS 2009/2010 LVA 703017

Name: Matr.Nr.:

1. Consider the λ-term t = (λf x y.f ((λx y p.p x y) x y)) (λq.q (λu v.u)).

(a) Compute the sets Var(t), BVar(t), and FVar(t).[5]

(b) Draw the syntax tree of λq.q (λu v.u).[5]

(c) Reduce t to normal form, using the leftmost innermost reduction strategy.[15]

2. Consider the OCaml functions

let rec rev_append xs ys = match xs with

| [] -> ys
| x::xs -> rev_append xs (x::ys)

let rec (@) xs ys = match xs with

| [] -> ys
| x::xs -> x::(xs @ ys)

let rec rev = function [] -> []
| x::xs -> rev xs @ [x]

Use induction over xs, to prove that rev_append xs ys = rev xs @ ys. Remember that [x] is just
an abbreviation for x :: []. Additionally you may freely use the equation:

xs @ (ys @ zs) = (xs @ ys) @ zs (1)

(a) Give the base case of your induction proof.[5]

(b) Give the induction hypothesis and the step case of your induction proof.[20]

3. Consider the OCaml functions

let rec count0 = function

| [] -> 0
| x::xs -> if x = 0 then 1 + count0 xs

else count0 xs

let rec count1 = function

| [] -> 0
| x::xs -> if x = 1 then 1 + count1 xs

else count1 xs

(a) Use tupling to implement a function count that combines the effects of count0 and count1.[12]

(b) Give a tail-recursive implementation of the function count from (a).[13]

4. Consider the CoreML expression e = (λx.x@x) together with the environment E = {@ : list(α0) →
list(α0) → list(α0)}.
(a) Use type checking to prove that e has the type τ = list(α0) → list(α0).[10]

(b) First transform E B e : list(int) → list(int) into a unification problem and then apply unifi-[15]
cation to infer whether e really has the type list(int) → list(int).


