Functional Programming

[5]

[5]

Γ157

[5]

[20]

WS 2009/2010

LVA 703017

Name: Matr.Nr.:

- **1.** Consider the λ -term $t = (\lambda f \ x \ y.f \ ((\lambda x \ y \ p.p \ x \ y) \ x \ y)) \ (\lambda q.q \ (\lambda u \ v.u)).$
 - (a) Compute the sets Var(t), $\mathcal{B}Var(t)$, and $\mathcal{F}Var(t)$.
 - (b) Draw the syntax tree of $\lambda q.q$ ($\lambda u v.u$).
- (c) Reduce t to normal form, using the leftmost innermost reduction strategy.
 - 2. Consider the OCaml functions

Use induction over xs, to prove that rev_append xs ys = rev xs @ ys. Remember that [x] is just an abbreviation for x :: []. Additionally you may freely use the equation:

$$xs \circ (ys \circ zs) = (xs \circ ys) \circ zs \tag{1}$$

- (a) Give the base case of your induction proof.
 - (b) Give the induction hypothesis and the step case of your induction proof.
 - **3.** Consider the OCaml functions

- [12] (a) Use tupling to implement a function count that combines the effects of count 0 and count 1.
- [13] (b) Give a tail-recursive implementation of the function count from (a).
 - **4.** Consider the CoreML expression $e = (\lambda x. x @ x)$ together with the environment $E = \{ @ : \mathsf{list}(\alpha_0) \to \mathsf{list}(\alpha_0) \to \mathsf{list}(\alpha_0) \}$.
- [10] (a) Use type checking to prove that e has the type $\tau = \operatorname{list}(\alpha_0) \to \operatorname{list}(\alpha_0)$.
- [15] (b) First transform $E \triangleright e : \mathsf{list}(\mathsf{int}) \to \mathsf{list}(\mathsf{int})$ into a unification problem and then apply unification to infer whether e really has the type $\mathsf{list}(\mathsf{int}) \to \mathsf{list}(\mathsf{int})$.