University of Innsbruck Institute of Computer Science

15t Exam February 5, 2010
Functional Programming WS 2009/2010 LVA 703017
Name: Matr.Nr.:

1. Consider the A-term ¢t = (A\f z y.f (Ax y p.p x y) z y)) (Ag.q (Au v.u)).

(5] (a) Compute the sets Var(t), BVar(t), and FVar(t).
(5] (b) Draw the syntax tree of A\q.q (Au v.u).
[15] (c) Reduce t to normal form, using the leftmost innermost reduction strategy.

2. Consider the OCaml functions

let rec rev_append xs ys = match xs with
| [] -> ys

| x::xs -> rev_append xs (x::ys)

let rec (@) xs ys = match xs with
| [] -> ys
| x::xs -> x::(xs @ ys)

let rec rev = function [] -> [
| x::x8 -> rev xs @ [x]

Use induction over zs, to prove that rev_append zs ys = rev zs @ ys. Remember that [x] is just
an abbreviation for x : : []. Additionally you may freely use the equation:

s @ (ys@zs) = (zs @ ys) 0 zs (1)
(5] (a) Give the base case of your induction proof.
[20] (b) Give the induction hypothesis and the step case of your induction proof.

3. Consider the OCaml functions

let rec countO = function
| [] -> 0
| x::xs -> if x = 0 then 1 + countO xs
else countO xs

let rec countl = function
| [-> 0
| x::xs -> if x = 1 then 1 + countl xs
else countl xs

[12] (a) Use tupling to implement a function count that combines the effects of count0 and counti.

[13] (b) Give a tail-recursive implementation of the function count from (a).

4. Consider the CoreML expression e = (Az.z@z) together with the environment F = {0 : list(ag) —
|iSt(Odo) — |iSt(Oé0)}.
[10] (a) Use type checking to prove that e has the type 7 = list(ag) — list(av).

[15] (b) First transform E > e : list(int) — list(int) into a unification problem and then apply unifi-
cation to infer whether e really has the type list(int) — list(int).

