
University of Innsbruck Institute of Computer Science

3rd Exam November 5 2010

Functional Programming WS 2009/2010 LVA 703017

Name: Matr.Nr.:

1. Consider the λ-term S = λx y z.x z (y z)

(a) Reduce the term S S S to normal form, using the leftmost innermost reduction strategy.[12]

(b) Reduce the term S S S to normal form, using the leftmost outermost reduction strategy.[13]

2. Consider the three OCaml functions

let rec take n xs = if n < 1 then [] else match xs with

| [] -> []
| x::xs -> x :: take (n-1) xs

let rec length = function [] -> 0
| _::xs -> 1 + length xs

let rec init = function x::y::xs -> x :: init (y::xs)
| _ -> []

Prove by induction that init xs = take (length xs − 1) xs for every list xs. (Hint: In the step
case, you will need a further case distinction on the tail of the list.)

(a) Base case.[5]

(b) Step case.[20]

3. Consider the OCaml function:

let rec sum = function [] -> 0
| x::xs -> x + sum xs

(a) Implement a tail-recursive variant of sum.[12]

(b) Use tupling to implement a function average : int list -> int, producing the same[13]
results as if defined via average xs = sum xs/length xs.

4. Consider the typing environment E = {true : bool}.
(a) Use type checking to decide whether the expression let x = true in x x is of type bool with[12]

respect to the environment E. Justify your answer.

(b) Solve (if possible) the unification problem:[13]

α1 → α2 → α3 ≈ α4 → (α2 → α2)→ α5


