University of Innsbruck Institute of Computer Science

3"Y Exam November 5 2010
Functional Programming WS 2009/2010 LVA 703017
Name: Matr.Nr.:

1. Consider the \-term S = xyz.x z (y 2)
[12] (a) Reduce the term S S S to normal form, using the leftmost innermost reduction strategy.

[13] (b) Reduce the term S S S to normal form, using the leftmost outermost reduction strategy.

2. Consider the three OCaml functions

let rec take n xs = if n < 1 then [] else match xs with

I 00 -> 1

| x::xs -> x :: take (n-1) xs

let rec length = function [] -> O
| _::xs => 1 + length xs

let rec init = function x::y::xs -> x :: init (y::xs)

- >
Prove by induction that init zs = take (length xs — 1) zs for every list zs. (Hint: In the step
case, you will need a further case distinction on the tail of the list.)
(5] (a) Base case.
[20] (b) Step case.

3. Consider the OCaml function:

let rec sum = function [] -> O
| x::xs -> x + sum xs

[12] (a) Implement a tail-recursive variant of sum.
[13] (b) Use tupling to implement a function average : int list -> int, producing the same
results as if defined via average zs = sum zs/length zs.
4. Consider the typing environment E = {true : bool}.

[12] (a) Use type checking to decide whether the expression let = = true in x z is of type bool with
respect to the environment E. Justify your answer.

[13] (b) Solve (if possible) the unification problem:

041—>062H043%0é4—>((12—>042)—>045



