University of Innsbruck

Institute of Computer Science
3rd Exam

November 5 2010
LVA 703017

Functional Programming WS 2009/2010

Solutions

1. Consider the \-term S = xyz.x z (y 2)

[12] (a) Reduce the term S S S to normal form, using the leftmost innermost reduction strategy.
Solution.
SSS
= Myzrz(yz) Myzaz(yz) Aryzzz(yz)
—g(A\yz(Mxyzarz(yz)zyz) \yzez(yz)
—s (M 2.y 212 21 (y 21)) (y 2)) Az y 2.2 2 (y 2))
—g(Ay zz1.221 (y 2 21)) A\ y z.2 2 (y 2))
—gAz 21.2 21 (A y 2z 2 (y 2)) 2 21)
—g Az 21.2 21 (A\y z1.2 21 (y 21)) 21)
—g Az 21.2 21 (A22.2 22 (21 22))
[13] (b) Reduce the term S S S to normal form, using the leftmost outermost reduction strategy.
Solution.
SSS
= Myzzz(yz) Myzzxz(yz) Aryzzz(yz)
sy 20y 2 2 (y 2) 2 (5 2) Qg 2.0 2 (y 2)
—gXz.(Aryzzz(yz)z(Aryzez(yz)z)
—gAz.(A\y z1.2 21 (y 21)) (Az y z.x 2 (y 2)) 2)
—gAz z1.2 21 (A y 2z 2 (y 2)) 2 21)
—g Az 21.2 21 (MY z1.2 21 (y 21)) 21)
—g Az 21.2 21 (A22.2 22 (21 22))
2. Consider the three OCaml functions
let rec take n xs = if n < 1 then [] else match xs with
I 00 ->1
| x::xs => x :: take (n-1) xs
let rec length = function [] -> O
| _::xs -> 1 + length xs
let rec init = function x::y::xs -> x :: init (y::xs)
I - > [
Prove by induction that init zs = take (length xs — 1) zs for every list zs. (Hint: In the step
case, you will need a further case distinction on the tail of the list.)
(5] (a) Base case.

Solution.

Base Case (zs = [1). By applying the definitions of the three functions, we prove the base
case as follows: take (length []1 —1) [] = take (—1) []1 =[] = init [].
[20] (b) Step case.



University of Innsbruck Institute of Computer Science
3rd Exam November 5 2010

Functional Programming WS 2009/2010 LVA 703017

Solutions

Solution.

Step Case (zs = z :: zs). The IH is that init zs = take (length zs — 1) zs. Since the first
pattern in the definition of init requires at least two elements in zs, we do a further
case distinction on zs.

Case 1 (zs=[])

init (z:: [1) =[]
=take 0 (z:: [])
= take (length (z :: [1)—1) (2 :: [1)

Case 2 (zs =w :: ws)

init (z::w:: ws) =z ::init (w :: ws)
=z :: take (length zs — 1) zs by TH
= take (length (2 ::25) — 1) (2 :: 25)

3. Consider the OCaml function:

let rec sum = function [] -> O
| x::xs -> x + sum xs

[12] (a) Implement a tail-recursive variant of sum.

Solution.

let sum xs =
let rec sum’ acc = function [] -> acc
| x::xs -> sum’ (x + acc) xs
in
sum’ 0 xs

[13] (b) Use tupling to implement a function average : int list -> int, producing the same
results as if defined via average zs = sum xs/length xs.

Solution.

let average xs =
let rec average’ s 1 = function [] -> (s, 1)
| x::xs -> average’ (x + s) (1 + 1) xs
in
let (s, 1) = average’ 0 0 xs in
s/ 1

4. Consider the typing environment E = {true : bool}.

[12] (a) Use type checking to decide whether the expression let x = true in x x is of type bool with
respect to the environment E. Justify your answer.



[13]

University of Innsbruck Institute of Computer Science
3rd Exam November 5 2010

Functional Programming WS 2009/2010 LVA 703017

Solutions

Solution. By the rule (let), we need to be able to construct a proof tree for F, x : bool - z z :
bool. Since z is not of function type, this is impossible.

(b) Solve (if possible) the unification problem:

a1 — o — ag R ay — (g — ag) — as

Solution. After two applications of rule (da), we obtain:

a1 = Oy
a9 X (g — Q9

a3 =~ Q5

Now, no rule is applicable to the second equation and thus there is no solution.



