Functional Programming

WS 2009/2010

LVA 703017

Solutions

- **1.** Consider the λ -term $S = \lambda x y z . x z (y z)$
 - (a) Reduce the term S S to normal form, using the leftmost innermost reduction strategy.

Solution.

[12]

[13]

$$\begin{array}{l} S\;S\;S\\ =\;\; \underbrace{(\lambda x\;y\;z.x\;z\;(y\;z))\;(\lambda x\;y\;z.x\;z\;(y\;z))}_{\beta}\;(\lambda x\;y\;z.x\;z\;(y\;z))\\ \to_{\beta}\; \underbrace{(\lambda y\;z.\underbrace{(\lambda x\;y\;z.x\;z\;(y\;z))\;z\;(y\;z))\;(\lambda x\;y\;z.x\;z\;(y\;z))}_{\gamma\beta}\;(\lambda y\;z.\underbrace{(\lambda y\;z_1.z\;z_1\;(y\;z_1))\;(y\;z)}_{\gamma\beta}\;(\lambda x\;y\;z.x\;z\;(y\;z))\\ \to_{\beta}\; \underbrace{(\lambda y\;z}_{z_1.z\;z_1\;(y\;z\;z_1))\;(\lambda x\;y\;z.x\;z\;(y\;z))}_{\gamma\beta\;\lambda z\;z_1.z\;z_1\;(\underbrace{(\lambda x\;y\;z.x\;z\;(y\;z))\;z}_{\gamma\beta\;\lambda z\;z_1.z\;z_1\;(\underbrace{(\lambda x\;y\;z.x\;z\;(y\;z))\;z}_{\gamma\beta\;\lambda z\;z_1.z\;z_1\;(\underbrace{(\lambda x\;y\;z.x\;z\;(y\;z))}_{\gamma\beta\;\lambda z\;z_1.z\;z_1\;(\underbrace{(\lambda x\;z_1.z\;z_1\;(y\;z_1))\;z_1}_{\gamma\beta\;\lambda z\;z_1.z\;z_1\;(\underbrace{(\lambda x\;z_1.z\;z_1\;(y\;z_1))\;z_1}_{\gamma\beta\;\lambda z\;z_1.z\;z_1\;(\underbrace{(\lambda x\;z_1.z\;z_1\;(y\;z_1))\;z_1}_{\gamma\beta\;\lambda z\;z_1.z\;z_1\;(\underbrace{(\lambda x\;z_1.z\;z_1\;(y\;z_1))\;z_1}_{\gamma\beta\;\lambda z\;z_1.z\;z_1\;(\underbrace{(\lambda x\;z_1.z\;z_1\;(y\;z_1))\;z_1}_{\gamma\gamma\;\lambda z\;z_1.z\;z_2}_{\gamma\gamma\;\lambda z\;z_2.z\;z_2}_{\gamma\gamma\;\lambda z\;z_2}_{\gamma\gamma\;\lambda z\;z_2}_{\gamma\gamma\;$$

(b) Reduce the term S S S to normal form, using the leftmost outermost reduction strategy.

Solution.

$$\begin{array}{l} S\;S\;S\\ =\;\; \underbrace{(\lambda x\;y\;z.x\;z\;(y\;z))\;(\lambda x\;y\;z.x\;z\;(y\;z))}_{\beta}\;(\lambda x\;y\;z.x\;z\;(y\;z))}_{(\lambda y\;z.(\lambda x\;y\;z.x\;z\;(y\;z))\;z\;(y\;z))\;(\lambda x\;y\;z.x\;z\;(y\;z))}\\ \to_{\beta} \underbrace{(\lambda y\;z.(\lambda x\;y\;z.x\;z\;(y\;z))\;z\;((\lambda x\;y\;z.x\;z\;(y\;z))\;z)}_{\beta\;\lambda z\;\underbrace{(\lambda y\;z.x\;z\;(y\;z))\;z}_{\gamma}\;((\lambda x\;y\;z.x\;z\;(y\;z))\;z)}\\ \to_{\beta} \lambda z\;\underbrace{(\lambda y\;z.z\;z_1\;(y\;z_1))\;((\lambda x\;y\;z.x\;z\;(y\;z))\;z)}_{\gamma\;\beta\;\lambda z\;z_1.z\;z_1\;((\lambda x\;y\;z.x\;z\;(y\;z))\;z_1)}\\ \to_{\beta} \lambda z\;z_1.z\;z_1\;((\lambda y\;z.z\;z_1\;(y\;z.y))\;z_1)\\ \to_{\beta} \lambda z\;z_1.z\;z_1\;(\lambda z.z\;z.z\;z_2\;(z.z\;z_2))\\ \end{array}$$

2. Consider the three OCaml functions

Prove by induction that init xs = take (length xs - 1) xs for every list xs. (Hint: In the step case, you will need a further case distinction on the tail of the list.)

[5] (a) Base case.

Solution.

Base Case (xs = []). By applying the definitions of the three functions, we prove the base case as follows: take (length []-1) [] = take (-1) [] = [] = init [].

[20] (b) Step case.

Functional Programming

WS 2009/2010

LVA 703017

Solutions

Solution.

Step Case (xs = z :: zs). The IH is that init zs =take (length zs - 1) zs. Since the first pattern in the definition of init requires at least two elements in xs, we do a further case distinction on zs.

```
Case 1 (zs = [])
```

```
\begin{split} & \text{init} \; (z:: []) = [] \\ & = \text{take} \; 0 \; (z:: []) \\ & = \text{take} \; (\text{length} \; (z:: []) - 1) \; (z:: []) \end{split}
```

Case 2 (zs = w :: ws)

```
\begin{aligned} & \text{init } (z::w::ws) = z:: \text{init } (w::ws) \\ & = z:: \text{take (length } zs-1) \ zs & \text{by IH} \\ & = \text{take (length } (z::zs)-1) \ (z::zs) \end{aligned}
```

3. Consider the OCaml function:

(a) Implement a tail-recursive variant of sum.

Solution.

Γ12]

[13]

(b) Use tupling to implement a function average: int list \rightarrow int, producing the same results as if defined via average xs = sum xs/length xs.

Solution.

- **4.** Consider the typing environment $E = \{\text{true} : \text{bool}\}.$
- [12] (a) Use type checking to decide whether the expression let x = true in x is of type bool with respect to the environment E. Justify your answer.

University	of	Innsbruck
3 rd Exam		

[13]

Institute of Computer Science November 5 2010

Functional Programming WS 2009/2010 LVA 703017
Solutions

- Colations

Solution. By the rule (let), we need to be able to construct a proof tree for $E, x : \mathsf{bool} \vdash x \ x : \mathsf{bool}$. Since x is not of function type, this is impossible.

(b) Solve (if possible) the unification problem:

$$\alpha_1 \to \alpha_2 \to \alpha_3 \approx \alpha_4 \to (\alpha_2 \to \alpha_2) \to \alpha_5$$

Solution. After two applications of rule (d_2) , we obtain:

$$\alpha_1 \approx \alpha_4$$
 $\alpha_2 \approx \alpha_2 \rightarrow \alpha_2$
 $\alpha_3 \approx \alpha_5$

Now, no rule is applicable to the second equation and thus there is no solution.