
University of Innsbruck Institute of Computer Science

3rd Exam November 5 2010

Functional Programming WS 2009/2010 LVA 703017

Solutions

1. Consider the λ-term S = λx y z.x z (y z)

(a) Reduce the term S S S to normal form, using the leftmost innermost reduction strategy.[12]

Solution.
S S S
= (λx y z.x z (y z)) (λx y z.x z (y z)) (λx y z.x z (y z))
→β (λy z.(λx y z.x z (y z)) z (y z)) (λx y z.x z (y z))
→β (λy z.(λy z1.z z1 (y z1)) (y z)) (λx y z.x z (y z))
→β (λy z z1.z z1 (y z z1)) (λx y z.x z (y z))
→β λz z1.z z1 ((λx y z.x z (y z)) z z1)
→β λz z1.z z1 ((λy z1.z z1 (y z1)) z1)
→β λz z1.z z1 (λz2.z z2 (z1 z2))

(b) Reduce the term S S S to normal form, using the leftmost outermost reduction strategy.[13]

Solution.
S S S
= (λx y z.x z (y z)) (λx y z.x z (y z)) (λx y z.x z (y z))
→β (λy z.(λx y z.x z (y z)) z (y z)) (λx y z.x z (y z))
→β λz.(λx y z.x z (y z)) z ((λx y z.x z (y z)) z)
→β λz.(λy z1.z z1 (y z1)) ((λx y z.x z (y z)) z)
→β λz z1.z z1 ((λx y z.x z (y z)) z z1)
→β λz z1.z z1 ((λy z1.z z1 (y z1)) z1)
→β λz z1.z z1 (λz2.z z2 (z1 z2))

2. Consider the three OCaml functions

let rec take n xs = if n < 1 then [] else match xs with

| [] -> []
| x::xs -> x :: take (n-1) xs

let rec length = function [] -> 0
| _::xs -> 1 + length xs

let rec init = function x::y::xs -> x :: init (y::xs)
| _ -> []

Prove by induction that init xs = take (length xs − 1) xs for every list xs. (Hint: In the step
case, you will need a further case distinction on the tail of the list.)

(a) Base case.[5]

Solution.

Base Case (xs = []). By applying the definitions of the three functions, we prove the base
case as follows: take (length []− 1) [] = take (−1) [] = [] = init [].

(b) Step case.[20]



University of Innsbruck Institute of Computer Science

3rd Exam November 5 2010

Functional Programming WS 2009/2010 LVA 703017

Solutions

Solution.

Step Case (xs = z :: zs). The IH is that init zs = take (length zs − 1) zs. Since the first
pattern in the definition of init requires at least two elements in xs, we do a further
case distinction on zs.

Case 1 (zs = [])

init (z :: []) = []

= take 0 (z :: [])
= take (length (z :: [])− 1) (z :: [])

Case 2 (zs = w :: ws)

init (z :: w :: ws) = z :: init (w :: ws)
= z :: take (length zs − 1) zs by IH
= take (length (z :: zs)− 1) (z :: zs)

3. Consider the OCaml function:

let rec sum = function [] -> 0
| x::xs -> x + sum xs

(a) Implement a tail-recursive variant of sum.[12]

Solution.

let sum xs =
let rec sum’ acc = function [] -> acc

| x::xs -> sum’ (x + acc) xs
in

sum’ 0 xs

(b) Use tupling to implement a function average : int list -> int, producing the same[13]
results as if defined via average xs = sum xs/length xs.

Solution.

let average xs =
let rec average’ s l = function [] -> (s, l)

| x::xs -> average’ (x + s) (l + 1) xs
in

let (s, l) = average’ 0 0 xs in

s / l

4. Consider the typing environment E = {true : bool}.
(a) Use type checking to decide whether the expression let x = true in x x is of type bool with[12]

respect to the environment E. Justify your answer.



University of Innsbruck Institute of Computer Science

3rd Exam November 5 2010

Functional Programming WS 2009/2010 LVA 703017

Solutions

Solution. By the rule (let), we need to be able to construct a proof tree for E, x : bool ` x x :
bool. Since x is not of function type, this is impossible.

(b) Solve (if possible) the unification problem:[13]

α1 → α2 → α3 ≈ α4 → (α2 → α2)→ α5

Solution. After two applications of rule (d2), we obtain:

α1 ≈ α4

α2 ≈ α2 → α2

α3 ≈ α5

Now, no rule is applicable to the second equation and thus there is no solution.


