Functional Programming Exercises Week 5 (for November 13, 2009)

1. Read Chapter 5 of the lecture notes.
2. Use the conventions to simplify the following λ-term

$$
(\lambda x \cdot(\lambda y \cdot(\lambda z \cdot(((x y)(y x)) z))))
$$

Use the conventions backwards to write the following λ-term in 'full-detail'

$$
\lambda a b c d . a b c d(d c c a)
$$

3. A well-known λ-term (at least in scientific circles) is the so called S-combinator; defined by

$$
S \stackrel{\text { def }}{=} \lambda x y z \cdot x z(y z)
$$

Give its syntax tree and the set $\mathcal{S u b}(S)$ of all its subterms.
4. For each λ-term t out of $\{\lambda x . x y, \lambda x y . z, \lambda x . x(y z)\}$ give the sets $\operatorname{Var}(t), \mathcal{B} \mathcal{V} \operatorname{ar}(t)$, and $\mathcal{F} \mathcal{V}$ ar (t) - the set of variables, bound variables, and free variables in t, respectively.
5. Use the following type for λ-terms

```
type var = Strng.t
type term = Var of var
    | App of (term * term)
    | Abs of (var * term)
```

to implement the functions:

```
subterms : term -> term list
vars : term -> var list
fvars : term -> var list
bvars : term -> var list
```

6. Consider the λ-term $S S S$ (recall that S stands for $\lambda x y z . x z(y z)$). Rewrite it to normal form (NF).

Warning: Make sure to avoid variable capture.

