it

Functional Programming

Exercises Week 8§
(for December 4, 2009)

Read Chapters 6 and 7 of the lecture notes.
Use induction over lists to prove the equation
sumlen zs = (sum xs, length xs)

using the function definitions

let rec sum = function [] -> 0
| x::xs -> x + sum xs

function [] -> 0
| _::xs -> 1 + length xs

let rec length

let rec sumlen = function
| [-> (0,0)

| x::xs -> let (s,1) = sumlen xs in (s+x,1+1)

Give a tail recursive implementation of the function length : ’a list -> int,
computing the length of a list.

Use induction over lists to prove that your function from Exercise 3, produces the
same results as the non tail recursive one given in Exercise 2.

Use tupling to implement a more efficient version of the function split_at:

let rec take n xs = if n < 1 then [] else match xs with

|] -> [

| x::xs => x :: take (n-1) xs

let rec drop n xs = if n < 1 then xs else match xs with
|] -> [
| _::xs => drop (n-1) xs

let split_at n xs = (take n xs,drop n xs)

Find a non tail recursive function in the modules from the lecture that has not
been treated yet. Justify why it is not tail recursive.

