## Solutions

This test consists of four exercises. Explain your answers. The available points for each item are written in the margin.

1. Given the functions
```
let rec foldl f b xs = match xs with
    | [] -> b
    | x::xs -> foldl f (f b x) xs
let rec range m n = if m > n then [] else m :: range (m+1) n
```

evaluate the function call foldl (fun ys x -> x :: ys) [] (range 1 2) and give at least 6 intermediate steps.

Solution.

```
foldl (fun ys x -> x :: ys) [] (range 1 2)
    ->+}\mathrm{ foldl (fun ys x -> x :: ys) [] (1 :: (range 2 2))
    ->+}\mathrm{ foldl (fun ys x -> x :: ys) [] (1 :: 2 :: (range 3 2))
    ->+
    ->+}\mathrm{ foldl (fun ys x -> x :: ys) [1] [2]
    ->+}\mathrm{ foldl (fun ys x -> x :: ys) [2;1] []
    ->+}[2;1
```

2. (a) Implement a function remdups : 'a list $->$ 'a list that removes duplicate elements from a list. E.g.,

$$
\text { remdups }[1 ; 2 ; 1 ; 3]=[2 ; 1 ; 3]
$$

Hint: The function List.mem : 'a -> 'a list -> bool may be useful.
Solution.

```
let rec remdups = function
    | [] -> []
    | x::xs -> if List.mem x xs then remdups xs else x :: remdups xs
```

(b) Implement a function pair : 'a list $->$ ('a * 'a) list with the following behavior:

$$
\begin{aligned}
\operatorname{pair}\left[x_{1} ; x_{2} ; x_{3} ; x_{4} ; \ldots ; x_{n}\right] & =\left[\left(x_{1}, x_{2}\right) ;\left(x_{3}, x_{4}\right) ; \ldots ;\left(x_{n-1}, x_{n}\right)\right] \\
\text { pair }\left[x_{1} ; x_{2} ; x_{3}\right] & =\left[\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

Solution.

```
let rec pair = function
    | [] -> []
    | [_] -> []
    | x::y::xs -> (x,y)::pair xs
```


## Solutions

[5] 3. Give the sets $\mathcal{B V}$ ar, $\mathcal{F} \mathcal{V}$ ar, $\mathcal{V}$ ar, and $\mathcal{S}$ ub for the $\lambda$-term $t=(\lambda a b z . x a(y z))(x y)$.
Solution.

$$
\begin{aligned}
\mathcal{B} \mathcal{V} \mathrm{ar} & =\{a, b, z\} \\
\mathcal{F} \mathcal{V} \mathrm{ar} & =\{x, y\} \\
\mathcal{V} \mathrm{ar} & =\{a, b, x, y, z\} \\
\mathcal{S u b} & =\{t, \lambda a b z \cdot x a(y z), \lambda b z \cdot x a(y z), \lambda z \cdot x a(y z), x a(y z), x a, y z, x \quad y, a, x, y, z\}
\end{aligned}
$$

[6] 4. Rewrite the following $\lambda$-term to NF, giving all intermediate $\beta$-steps.

$$
(\lambda m n f x . m f(n f x))(\lambda f x . f x)(\lambda f x . x)
$$

Solution.

$$
\begin{aligned}
& \frac{(\lambda m n f x . m f(n f x))(\lambda f x . f x)}{}(\lambda f x . x) \\
& \rightarrow_{\beta}(\lambda n f x .(\lambda f x . f x) f(n f x))(\lambda f x . x) \\
& \rightarrow_{\beta} \overline{\lambda f x .(\lambda f x . f x) f((\lambda f x \cdot x) f x)} \\
& \rightarrow_{\beta} \lambda f x \cdot \overline{(\lambda x . f x)((\lambda f x \cdot x) f x)} \\
& \rightarrow_{\beta} \lambda f x . f(\underline{(\lambda f x \cdot x) f x)} \\
& \rightarrow_{\beta} \lambda f x . f \overline{(\lambda x \cdot x) x)} \\
& \rightarrow_{\beta} \lambda f x . f x
\end{aligned}
$$

