
University of Innsbruck Institute of Computer Science
Test 1B November 27, 2009

Functional Programming WS 2009/2010 LVA 703018

Solutions

This test consists of four exercises. Explain your answers. The available points for each item are written in the
margin.

1. Given the functions[6]

let rec foldl f b xs = match xs with

| [] -> b
| x::xs -> foldl f (f b x) xs

let rec range m n = if m > n then [] else m :: range (m+1) n

evaluate the function call foldl (fun ys x -> x :: ys) [] (range 1 2) and give at least 6
intermediate steps.

Solution.

foldl (fun ys x -> x :: ys) [] (range 1 2)
→+ foldl (fun ys x -> x :: ys) [] (1 :: (range 2 2))
→+ foldl (fun ys x -> x :: ys) [] (1 :: 2 :: (range 3 2))
→+ foldl (fun ys x -> x :: ys) [] [1; 2]
→+ foldl (fun ys x -> x :: ys) [1] [2]
→+ foldl (fun ys x -> x :: ys) [2;1] []
→+ [2;1]

2. (a) Implement a function remdups : ’a list -> ’a list that removes duplicate elements[4]
from a list. E.g.,

remdups [1;2;1;3] = [2;1;3]

Hint: The function List.mem : ’a -> ’a list -> bool may be useful.

Solution.

let rec remdups = function

| [] -> []
| x::xs -> if List.mem x xs then remdups xs else x :: remdups xs

(b) Implement a function pair : ’a list -> (’a * ’a)list with the following behavior:[4]

pair [x1;x2;x3;x4; . . . ;xn] = [(x1,x2);(x3,x4); . . . ;(xn−1,xn)]

pair [x1;x2;x3] = [(x1,x2)]

Solution.

let rec pair = function

| [] -> []
| [_] -> []
| x::y::xs -> (x,y)::pair xs



University of Innsbruck Institute of Computer Science
Test 1B November 27, 2009

Functional Programming WS 2009/2010 LVA 703018

Solutions

3. Give the sets BVar, FVar, Var, and Sub for the λ-term t = (λabz.x a (y z)) (x y).[5]

Solution.

BVar = {a, b, z}
FVar = {x, y}
Var = {a, b, x, y, z}
Sub = {t, λabz.x a (y z), λbz.x a (y z), λz.x a (y z), x a (y z), x a, y z, x y, a, x, y, z}

4. Rewrite the following λ-term to NF, giving all intermediate β-steps.[6]

(λmnfx.m f (n f x)) (λfx.f x) (λfx.x)

Solution.
(λm n f x.m f (n f x)) (λf x.f x) (λf x.x)
→β (λn f x.(λf x.f x) f (n f x)) (λf x.x)
→β λf x.(λf x.f x) f ((λf x.x) f x)
→β λf x.(λx.f x) ((λf x.x) f x)
→β λf x.f ((λf x.x) f x)
→β λf x.f ((λx.x) x)
→β λf x.f x


