
University of Innsbruck Institute of Computer Science
Test 2B January 15, 2010

Functional Programming WS 2009/2010 LVA 703018

Name: Matr.Nr.:

This test consists of three exercises. Explain your answers. The available points for each item are written in the
margin.

1. Reduce the λ-term[8]

(λp.p (λx y.y)) ((λx y f.f x y) Y (λy.y))

to normal form using the leftmost outermost reduction strategy. Here, Y denotes the λ-term
λf.(λx.f (x x)) (λx.f (x x)).

2. Consider the OCaml functions[8]

let rec (@) xs ys = match xs with [] -> ys
| x::xs -> x::(xs@ys)

let rec rev = function [] -> []
| x::xs -> rev xs @ [x]

let rec len = function [] -> 0
| _::xs -> 1 + len xs

Prove by induction that
len(rev xs) = len xs

for all lists xs. You may use the equation

len(xs @ ys) = len xs + len ys (?)

3. (a) Consider the type inference problem E B fst (pair 0 0) : α4 using the typing environment[5]
E = {fst : pair(α0, α1)→ α0, pair : α2 → α3 → pair(α2, α3), 0 : int}. Apply the type inference
rules of I, to compute a resulting unification problem. Give all the intermediate computation
steps.

(b) Solve the following unification problem.[4]

pair(α0, α1)→ α0 ≈ α5 → α4

int ≈ α6

α2 → α3 → pair(α2, α3) ≈ α7 → α6 → α5

int ≈ α7


