
Solutions Game Theory, LVA 703716 Institute of Computer Science

March 15, 2010 University of Innsbruck

1. a) Solution. Suppose <S is transitive, that is, for lotteries f , g, and h, if f <S g,
g <S h, then f <S h. Below we drop the subscript S to simplify notation.

Suppose f ∼ g, g ∼ h. Then by de�nition f < g, g < h and thus by

assumption f < h. On the other hand, we have h < g and g < f , from which

h < f follows. Thus the proof of f ∼ h is complete.

The proof that f �S g, g <S h, implies g �S h is similar.

b) Solution. � Suppose y is optimal for decision-maker with beliefs p and q
� λ ∈ [0, 1], r = λp+ (1− λ)q

∑
t∈Ω

r(t) · u(y, t) > λ
∑
t∈Ω

p(t)u(y, t) + (1− λ)
∑
t∈Ω

q(t)u(y, t)

> λ
∑
t∈Ω

p(t)u(x, t) + (1− λ)
∑
t∈Ω

q(t)u(x, t)

=
∑
t∈Ω

r(t) · u(x, t)

2. a) Solution. We write Di, Ri (i = 1, 2) for the strategies of player i. In extensive

form Γe, the game is described as follows.
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Importantly the information state is equal for the nodes of player 2, as player

2 cannot observe whether player 1 decided to hunt rabbits, or dears.

b) Solution. Transforming Γe in its normal representation yields the following

game Γ:



C2

C1 D2 R2

D1 4, 4 0, 2
R1 0, 2 2, 2

It is easy to see that this is also the fully reduced (normal) representation.

3. a) Solution. Consider the game Γ1 to the left. It is not di�cult to see that both

games are non-degenerated, that is, no mixed strategy of support size k has

more than k best responses. Hence if (x, y) is a Nash equilibrium, then the

support of the mixed strategies x, y is equal.

By considering all possible set of supports, we �nd the following equilibria:

� ([x1], [z2]),
� ([y1], [x2]), and
� (4

5 [x1] + 1
5 [x2], 3

4 [y2] + 1
4 [z2]).

The argumentation for the pure equilibria is easy. Thus we concentrate on the

third equilibria, whose set of support is {x1, y1} × {y2, z2}. We write σ1, σ2

for the mixed strategies, and get the following equations:

5σ2(y2) + 8σ2(z2) = 6σ2(y2) + 5σ2(z2)
σ2(y2) + σ2(z2) = 1

6σ1(x1) + 5σ1(y1) = 7σ1(x1) + 1σ(y1)

σ1(x1) + σ1(y1) = 1

Solving these equations, together with usual side conditions, yields the indi-

cated equilibrium:

(σ1, σ2) = (
4
5

[x1] +
1
5

[x2],
3
4

[y2] +
1
4

[z2])

b) Solution. Consider the game Γ2 to the left. By considering all possible set of

supports, we �nd the following unique equilibrium:

� (1
3 [x1] + 1

3 [y1] + 1
3 [z1], 1

3 [x2] + 1
3 [y2] + 1

3 [z2])
Consider the set of support: {x1, y1, z1}×{x2, y2, z2}, which yields the follow-

ing equation:

5σ2(y2) + 4σ2(z2) = 4σ2(x2) + 5σ2(z2) = 5σ2(x2) + 4σ2(y2)
σ2(x2) + σ2(y2) + σ2(z2) = 1

5σ1(y1) + 4σ1(z1) = 4σ1(x1) + 5σ1(z1) = 5σ1(x1) + 4σ1(y1)
σ1(x1) + σ1(y1) + σ1(z1) = 1

We obtain the above indicated unique solution.

4. Solution. See slides from week 12.

5.



Solution.

statement yes no

To assert a player is rational, means the player makes decisions

consistently in pursuit of her own objective.

X

A lottery is a function from states to the probability distribution

over a set of prizes. If the lottery is independent on the states it

depends only on subjective unknowns.

X

A set of vectors S is convex if for any two vectors p, q also λp+
(1− λ)q ∈ S, where λ ∈ [0, 1].

X

Given a �nite game Γ in strategic form, there exists at least one

pure equilibrium.

X

An auction where the bidders have the same private information

is called common value auction.

X

Nash's theorem of the existence of an equilibrium is not extensible

to games over in�nite strategy sets

X

A game may have multiple equilibria, but at least one of the

equlibria is e�cient.

X

Let m,n ∈ N and m < n. A two-person game is called degener-

ated if there exists a strategy pro�le σ with support size m such

that σ has n pure best responses.

X

For a Nash equilibrium (σ, ρ) of a degenerated two-person game,

σ and ρ have support of equal size.

X

If we can show that P = NP, then P = PPAD follows. X


