- a) Solution. Suppose ≽_S is transitive, that is, for lotteries f, g, and h, if f ≽_S g, g ≽_S h, then f ≽_S h. Below we drop the subscript S to simplify notation. Suppose f ~ g, g ~ h. Then by definition f ≽ g, g ≽ h and thus by assumption f ≽ h. On the other hand, we have h ≽ g and g ≽ f, from which h ≽ f follows. Thus the proof of f ~ h is complete. The proof that f ≻_S g, g ≽_S h, implies g ≻_S h is similar.
 - b) Solution. Suppose y is optimal for decision-maker with beliefs p and q – $\lambda \in [0, 1], r = \lambda p + (1 - \lambda)q$

$$\begin{split} \sum_{t \in \Omega} r(t) \cdot u(y,t) &\geqslant \lambda \sum_{t \in \Omega} p(t) u(y,t) + (1-\lambda) \sum_{t \in \Omega} q(t) u(y,t) \\ &\geqslant \lambda \sum_{t \in \Omega} p(t) u(x,t) + (1-\lambda) \sum_{t \in \Omega} q(t) u(x,t) \\ &= \sum_{t \in \Omega} r(t) \cdot u(x,t) \end{split}$$

2. a) Solution. We write D_i , R_i (i = 1, 2) for the strategies of player *i*. In extensive form Γ^e , the game is described as follows.

Importantly the information state is equal for the nodes of player 2, as player 2 cannot observe whether player 1 decided to hunt rabbits, or dears. \Box

b) Solution. Transforming Γ^e in its normal representation yields the following game Γ :

	C_2		
C_1	D_2	R_2	
D_1	4, 4	0,2	
R_1	0,2	2, 2	

It is easy to see that this is also the fully reduced (normal) representation. \Box

3. a) Solution. Consider the game Γ_1 to the left. It is not difficult to see that both games are non-degenerated, that is, no mixed strategy of support size k has more than k best responses. Hence if (x, y) is a Nash equilibrium, then the support of the mixed strategies x, y is equal.

By considering all possible set of supports, we find the following equilibria:

$$-([x_1], [z_2]),$$

- $-([y_1], [x_2]), \text{ and }$
- $\left(\frac{4}{5}[x_1] + \frac{1}{5}[x_2], \frac{3}{4}[y_2] + \frac{1}{4}[z_2]\right).$

The argumentation for the pure equilibria is easy. Thus we concentrate on the third equilibria, whose set of support is $\{x_1, y_1\} \times \{y_2, z_2\}$. We write σ_1, σ_2 for the mixed strategies, and get the following equations:

$$\begin{aligned} & 5\sigma_2(y_2) + 8\sigma_2(z_2) = 6\sigma_2(y_2) + 5\sigma_2(z_2) \\ & \sigma_2(y_2) + \sigma_2(z_2) = 1 \\ & 6\sigma_1(x_1) + 5\sigma_1(y_1) = 7\sigma_1(x_1) + 1\sigma_(y_1) \\ & \sigma_1(x_1) + \sigma_1(y_1) = 1 \end{aligned}$$

Solving these equations, together with usual side conditions, yields the indicated equilibrium:

$$(\sigma_1, \sigma_2) = (\frac{4}{5}[x_1] + \frac{1}{5}[x_2], \frac{3}{4}[y_2] + \frac{1}{4}[z_2])$$

b) Solution. Consider the game Γ_2 to the left. By considering all possible set of supports, we find the following unique equilibrium:

 $- \left(\frac{1}{3}[x_1] + \frac{1}{3}[y_1] + \frac{1}{3}[z_1], \frac{1}{3}[x_2] + \frac{1}{3}[y_2] + \frac{1}{3}[z_2]\right)$

Consider the set of support: $\{x_1, y_1, z_1\} \times \{x_2, y_2, z_2\}$, which yields the following equation:

$$5\sigma_2(y_2) + 4\sigma_2(z_2) = 4\sigma_2(x_2) + 5\sigma_2(z_2) = 5\sigma_2(x_2) + 4\sigma_2(y_2)$$

$$\sigma_2(x_2) + \sigma_2(y_2) + \sigma_2(z_2) = 1$$

$$5\sigma_1(y_1) + 4\sigma_1(z_1) = 4\sigma_1(x_1) + 5\sigma_1(z_1) = 5\sigma_1(x_1) + 4\sigma_1(y_1)$$

$$\sigma_1(x_1) + \sigma_1(y_1) + \sigma_1(z_1) = 1$$

We obtain the above indicated unique solution.

4. Solution. See slides from week 12.

5.

Solution.			
statement	yes	no	
To assert a player is rational, means the player makes decisions consistently in pursuit of her own objective.			
A lottery is a function from states to the probability distribution over a set of prizes. If the lottery is independent on the states it depends only on subjective unknowns.		\checkmark	
A set of vectors S is convex if for any two vectors p, q also $\lambda p + (1 - \lambda)q \in S$, where $\lambda \in [0, 1]$.		\checkmark	
Given a finite game Γ in strategic form, there exists at least one pure equilibrium.		\checkmark	
An auction where the bidders have the same private information is called common value auction.		\checkmark	
Nash's theorem of the existence of an equilibrium is not extensible to games over infinite strategy sets		\checkmark	
A game may have multiple equilibria, but at least one of the equilibria is efficient.		\checkmark	
Let $m, n \in \mathbb{N}$ and $m < n$. A two-person game is called degener- ated if there exists a strategy profile σ with support size m such that σ has n pure best responses.	\checkmark		
For a Nash equilibrium (σ, ρ) of a degenerated two-person game, σ and ρ have support of equal size.		\checkmark	
If we can show that $P=NP,$ then $P=PPAD$ follows.	\checkmark		