1 Problem Set (for October 20)

- Let $X \subseteq \mathbb{R}$ and X be finite with $x \in X$ a prize that amount to $\in x$. Consider the following definition of $f \succcurlyeq_{T} g$:

$$
\min _{s \in T} \sum_{x \in X} x \cdot f(x \mid s) \geqslant \min _{s \in T} \sum_{x \in X} x \cdot g(x \mid s) .
$$

(a) Give an informal explanation of the relation $f \succcurlyeq_{T} g$.
(b) Does this definition of \succcurlyeq_{T} violate any of the axioms on decision theory?
(c) Give an example of a preference (perhaps different from above) such that at least one axiom is violated.

- Consider the following four axioms on preferences of decision makers for lotteries f, g, and h and event S :
(i) $f \succcurlyeq_{S} g$ or $g \succcurlyeq_{S} f$,
(ii) if $e \succ_{S} f$ and $g \succcurlyeq_{S} h, \alpha \in(0,1]$ then $\alpha e+(1-\alpha) g \succ_{S} \alpha f+(1-\alpha) h$,
(iii) $f \succcurlyeq_{S} g$ and $g \succcurlyeq_{S} h$ implies $f \succcurlyeq_{S} h$, and
(iv) if $f \succ_{S} h$ and $0 \leqslant \beta<\alpha \leqslant 1$, then $\alpha f+(1-\alpha) h \succ_{S} \beta f+(1-\beta) h$.
(Here α, β are reals.) Prove the following two properties.
(a) The axiom (iii) follows from the first two.
(b) The axiom (iv) follows from the first two.

