
1 Problem Set 2 (for October 20)

� Show that Transitivity (of <S) implies

if f ∼S g and g ∼S h then g ∼S h

if f �S g and g <S h then g �S h

� Consider the proof of the Expected Utility Maximisation Theorem. Prove the following
equality used:
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� Consider the proof of the Expected Utility Maximisation Theorem. Prove the reveresed
direction, i.e., given a utility function u, a conditional-probability function p ful�lling the
assertions of the theorem, show that the thus de�ned relation <S ful�ls all axioms. (∗)

� A decision-maker expresses the following preference order:

[¿600] � [¿400] � .9[¿600] + .1[¿0] � .2[¿600] + 0.8[¿0] � .25[¿400] + .75[¿0] � [¿0]

Prove or disprove: These preferences are consistent with a state-independent utility of
money. (∗)
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