1 Problem Set 2 (for October 20)

– Show that Transitivity (of \succeq_S) implies

if
$$f \sim_S g$$
 and $g \sim_S h$ then $g \sim_S h$
if $f \succ_S g$ and $g \succcurlyeq_S h$ then $g \succ_S h$

- Consider the proof of the Expected Utility Maximisation Theorem. Prove the following equality used:

$$\frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x|t) \left(u(x,t) \left[p(t|S)a_1 + (1-p(t|S))a_0 \right] + (1-u(x,t))a_0 \right) = \\
= \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x|t)u(x,t)p(t|S)a_1 + \left(1 - \frac{1}{n} \left(\sum_{t \in \Omega} \sum_{x \in X} f(x|t)u(x,t)p(t|S) \right) \right) a_0 \tag{*}$$

- Consider the proof of the Expected Utility Maximisation Theorem. Prove the reversed direction, i.e., given a utility function u, a conditional-probability function p fulfilling the assertions of the theorem, show that the thus defined relation \succeq_S fulfils all axioms. (*)
- A decision-maker expresses the following preference order:

$$[{\textcircled{C}600}] \succ [{\textcircled{C}400}] \succ .9[{\textcircled{C}600}] + .1[{\textcircled{C}0}] \succ .2[{\textcircled{C}600}] + 0.8[{\textcircled{C}0}] \succ .25[{\textcircled{C}400}] + .75[{\textcircled{C}0}] \succ [{\textcircled{C}0}]$$

Prove or disprove: These preferences are consistent with a state-independent utility of money. (\ast)