1 Problem Set 6 (for January 26)

- Consider the following three player game Γ :

	C_{2} and C_{3}			
C_{1}	x_{3}	y_{2}		
	x_{2}	y_{2}	x_{2}	y_{2}
x_{1}	$0,0,0$	$6,5,4$	$4,6,5$	$0,0,0$
y_{1}	$5,4,6$	$0,0,0$	$0,0,0$	$0,0,0$

(a) Extend the definition of bi-matrix games to three-matrix games and transform Γ accordingly
(b) Find all equilibria of Γ.

- Consider a two-player game given in matrix form where each player has n strategies. Asume that the payoffs for each player are in the range $[0,1]$ and are selected independently and uniformly at random. Show that the probability this this random game as a pure Nash equilibrium approaches $1-\frac{1}{e}$ as n goes to infinty.
Hint: Recall that $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=\frac{1}{e}$.
- Recall two-person zero-sum games, together with the min-max theorem we considered for these games. Consider a three-person zero-sum game, i.e., a game in which the rewards of the three players always sums to zero. Show that finding a Nash equilibrium in such games is as least as hard as in general two-person games.
- Prove that the support enumeration algorithm leads to unique solutions of the considered linear equations, iff the (two-player) game is non-degenerated.
- Show that in an equilibrium of a non-degenerated game, all pure best responses are played with positive probability.

