1 Problem Set 6 (for January 26)

– Consider the following three player game $\Gamma:$

	C_2 and C_3			
	x_3		y_3	
C_1	x_2	y_2	x_2	y_2
x_1	0, 0, 0	6, 5, 4	4, 6, 5	0, 0, 0
y_1	5, 4, 6	0, 0, 0	0, 0, 0	0, 0, 0

- (a) Extend the definition of bi-matrix games to three-matrix games and transform Γ accordingly
- (b) Find all equilibria of Γ .

(*)

(*)

(*)

- Consider a two-player game given in matrix form where each player has n strategies. Asume that the payoffs for each player are in the range [0, 1] and are selected independently and uniformly at random. Show that the probability this this random game as a pure Nash equilibrium approaches $1 - \frac{1}{e}$ as n goes to infinty.

Hint: Recall that $\lim_{n\to\infty} (1-\frac{1}{n})^n = \frac{1}{e}$.

- Recall two-person zero-sum games, together with the min-max theorem we considered for these games. Consider a three-person zero-sum game, i.e., a game in which the rewards of the three players always sums to zero. Show that finding a Nash equilibrium in such games is as least as hard as in general two-person games.
- Prove that the support enumeration algorithm leads to unique solutions of the considered linear equations, iff the (two-player) game is non-degenerated.
- Show that in an equilibrium of a non-degenerated game, all pure best responses are played with positive probability.