

ary

Summary of Last Lecture

given a game Γ^e in extensive form

Definition

a mixed-strategy profile of Γ^e is any randomised strategy of the normal representation of Γ^e ; set of profiles is

 $\prod_{i\in N}\Delta(C_i)$

Definition

a behavioural-strategy profile of Γ^e is any randomised strategy of the multiagent representation of Γ^e ; set of profiles is

 $\prod_{s\in S^*} \Delta(D_s) = \prod_{i\in N} \prod_{s\in S_i} \Delta(D_s)$

Game Theory

GM (Institute of Computer Science @ UIBK) Content

Content

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium

two-person zero-sum games, Bayesian equilibria, sequential equilibra of extensive-form games, subgame-perfect equilibra

(efficient) computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Game Theory

Theorem $\forall \Gamma^e \text{ with } performance for a second second$

 $\forall \Gamma^e$ with perfect recall \exists a Nash equilibrium (of Γ^e); the perfect recall assumption is needed

Equilibria in Behavioural Strategies

Definition

a (Nash) equilibrium of an extensive-form game is any equilibrium σ of the multiagent representation such that the mixed representation of σ is an equilibrium of the normal representation

Game Theory

Georg Moser

Institute of Computer Science @ UIBK

Winter 2009

Theorem

if Γ^e admits perfect recall and τ is an equilibrium of the normal representation of Γ^e , then any behavioural representation of τ is an equilibrium (of the multiagent representation of Γ^e)

GM (Institute of Computer Science @ UIBK)

Example

consider game Γ

		C_2
C_1	<i>x</i> ₂	<i>y</i> ₂
<i>x</i> ₁	(3,3)	(3,2)
<i>Y</i> 1	(2,2)	(5,6)
<i>z</i> 1	(0,3)	(6,1)

• Γ is representable as two matrices A, B

	/3	3\		/3	2
A =	2	5	<i>B</i> =	2	6
		6/		(3	1/

Notation

- M denotes the set of m pure strategies of player 1
- N denotes the set of n pure strategies of player 2

$$M = \{1, ..., m\}$$
 $N = \{m + 1, ..., m + n\}$

Game Theory

Notation

- let c be a pure strategy profile and σ ∈ ∏_{i∈N} Δ(C_i) a randomised strategy profile
- using linear algebra notation, we write:

$$\sigma_i = \sum_{c_i \in C_i} \sigma(c_i)[c_i]$$

- only the vector $\mathbf{x} := (\sigma(c_{i1}), \dots, \sigma(c_{i|C_i|}))$ is important
- we call x a mixed strategy

Definition

let x, y be be mixed strategies, then x is best response to y if and only if

 $x_i > 0$ implies $(Ay)_i = u = \max\{(Ay)_k \mid k \in M\}$ $\forall i \in M$

Definition

the support of a mixed strategy x is the set

 $\prod_{i\in N} \{c_i \in C_i \mid x_i > 0\}$

Example

Content

in the battle of sexes

GM (Institute of Computer Science @ UIBK

- 1 the support of $([f_1], [f_2])$ is $\{f_1\} \times \{f_2\}$ and the support of $([s_1], [s_2])$ is $\{s_1\} \times \{s_2\}$
- **2** the support of $(0.75[f_1] + 0.25[s_1], 0.25[f_2] + 0.75[s_2])$ is $\{f_1, s_1\} \times \{f_2, s_2\}$

Definition

a (two-player) game is nondegenerate if no mixed strategy of support size k has more than k pure best responses.

Theorem

for a Nash equilibrium (x, y) of a nondegenerated bimatrix game, x and y have support of equal size

Game Theory

Proof

follows from the definition of nondegeneration and best response condition

Equilibria by Support Enumeration

Algorithm

GM (Institute of Computer Science @ UIBP

- INPUT: a nondegenerate bimatrix game
- OUTPUT: all Nash equilibria

Method

- $\forall k \in \{1, \ldots, \min\{m, n\} \}$
- **2** \forall k-sized subsets (I, J) of M, N
- **3** solve the following equation

$$\sum_{i \in I} x_i b_{ij} = v \quad ext{for } j \in J \qquad \qquad \sum_{j \in J} a_{ij} y_j = u \quad ext{for } i \in I$$
 $\sum_{i \in I} x_i = 1 \qquad \qquad \sum_{j \in J} y_j = 1$

such that $x \ge 0$, $y \ge 0$ and the best response condition is fulfilled for x and y

Game Theory

best response

support