Game Theory Georg Moser Institute of Computer Science @ UIBK Winter 2009	Summary of Last Lecture Algorithm • INPUT: a nondegenerate bimatrix game • OUTPUT: all Nash equilibria Method • $\forall k \in \{1,, \min\{m, n\}\}$ • $\forall k - sized subsets (I, J) of M, N$ • solve the following equation $\sum_{i \in I} x_i b_{ij} = v \text{ for } j \in J$ $\sum_{j \in J} a_{ij} y_j = u \text{ for } i \in I$ $\sum_{i \in I} x_i = 1$ $\sum_{j \in J} y_j = 1$ such that $x \ge 0$, $y \ge 0$ and the best response condition is fulfilled for x and y	
Content (institute of Computer Science @ UIBK) Game Theory 1/35 Content Content (institute of Computer Science @ UIBK) 1/35 Content Content (institute of Computer Science @ UIBK) 1/35 M (institute of Computer Science @ UIBK) Game Theory 1/35 Content Content (institute of Computer Science @ UIBK) 1/35 M (institute of Computer Science @ UIBK) Game Theory 1/35 Content motivation, introduction to decision theory, decision theory 1/35 basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium 1/35 two-person zero-sum games, Bayesian equilibria, sequential equilibra of extensive-form games, subgame-perfect equilibra (efficient) computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria	$\sum_{i=1}^{k} z_i \lambda_i \qquad \lambda_i \in \mathbb{R} \sum_{i=1}^{k} \lambda_i = 1$ e it is called convex combination of $\lambda_i \ge 0$ for all <i>i</i> e a set of points is convex if closed under forming convex combinations $\sum_{i=1}^{k} z_i \lambda_i \qquad \lambda_i \in \mathbb{R} \sum_{i=1}^{k} \lambda_i = 1$ $\sum_{i=1}^{k} z_i \lambda_i = 0 \text{ for all } i$ $\sum_{i=1}^{k} z_i \lambda_i = 0 \text{ for all } i$ $\sum_{i=1}^{k} z_i \lambda_i = 0 \text{ for all } i$ $\sum_{i=1}^{k} z_i \lambda_i = 0 \text{ for all } i$ $\sum_{i=1}^{k} z_i \lambda_i = 0 \text{ for all } i$	

Equilibria via Labeled Polytop

Definition

- a polyhedron $P \in \mathbb{R}^d$ is a set $\{z \in \mathbb{R}^d \mid Cz \leqslant q\}$ for some matrix C, vector q
- *P* is full-dimensional if it has dimension *d* (i.e., *d* + 1 (but not more) affinely independent elements)
- *P* is a polytope if bounded
- the face of P is $\{z \in P \mid c^{\top}z = q_0\}$ for $c \in \mathbb{R}^d$, $q_0 \in \mathbb{R}$

Example

the following objects are polytops

- pyramids, i.e, tetrahedrons
- Rubben's cube
- octahedron
- dices in rôle games, i.e., icosahedron

Equilibria via Labeled Polytopes

Definitionlet P denote a polyhedron

- a vertex of P is the unique element of a zero-dimensional face of P
- an edge is a one-dimensional face of P
- a facet of a d-dimensional P is a d-1-dimensional face

Definition

best response polyhedron

the best response polyhedron of a player is the set of that player's mixed strategies together with a bound of expected payoffs to the other player

Example

consider **F**

$$A = \begin{pmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 2 \\ 2 & 6 \\ 3 & 1 \end{pmatrix}$$

then

$$\overline{Q} = \left\{ (y_4, y_5, u) \mid \frac{3y_4 + 3y_5 \leqslant u, \ 3y_4 + 5y_5 \leqslant u, \ 6y_5 \leqslant u, \\ y_4 \geqslant 0, \ y_5 \geqslant 0, \ y_4 + y_5 = 1 \right\}$$

Institute of Computer Science @ UIBK', Game

Definition

best response polyhedra for player 1 and 2 $\,$

 $\overline{P} = \{ (x, v) \in \mathbb{R}^m \times \mathbb{R} \mid x \ge \mathbf{0}, \mathbf{1}^\top x = 1, B^\top x \le \mathbf{1}v \}$ $\overline{Q} = \{ (y, u) \in \mathbb{R}^n \times \mathbb{R} \mid Ay \le \mathbf{1}u, y \ge \mathbf{0}, \mathbf{1}^\top y = 1 \}$

Definition

a point $(y, u) \in \overline{Q}$ has label $k \in M \cup N$ if

• the k^{th} inequality in the definition of \overline{Q} is binding

• i.e.,
$$\sum_{i \in N} a_{kj} y_j = u$$
 if $k = i \in M$ or

• for $k = j \in N$, $y_j = 0$

Example

the point $(\frac{2}{3}, \frac{1}{3}, 3)$ has labels 1 and 2, as x_1 , x_2 are best responses to y for player 1 that yields pay-off 3

Definition

GM (Institute of Computer Science @

a point $(x, v) \in \overline{P}$ has label $k \in M \cup N$ if

- $k = i \in M$ and $x_i = 0$ or
- $k = j \in N$ and $\sum_{i \in M} b_{ik} x_i = v$

Lemma

an equilibrium (x, y) is a pair such that

- pair $((x, v), (y, u)) \in \overline{P} \times \overline{Q}$
- this pair is completely labeled, i.e.
 every label k ∈ M ∪ N labels either (x, v) or (y, u)

Proof

again this is a reformulation of the best response condition

Equilibria via Labeled Polytope

Assumptions

suppose A and B^{\top} are non-negative and have no zero columns

Definition

consider \overline{P} :

- we divide each $\sum_{i \in M} b_{ij} x_i \leqslant v$ by v
- this gives $\sum_{i \in M} b_{ij}(\frac{x_i}{v}) \leqslant 1$
- we treat $\frac{x_i}{y}$ as a new variable (again called x_i)

Definition

the normalised polytopes have the following generic form:

$$P = \{ x \in \mathbb{R}^m \mid x \ge \mathbf{0}, B^\top x \le \mathbf{1} \}$$
$$Q = \{ y \in \mathbb{R}^n \mid Ay \le \mathbf{1}, y \ge \mathbf{0} \}$$

Lemma

the polyhedra P and Q are full-dimensional polytopes, moreover there is a one-to-one correspondence between $\overline{P}(\overline{Q})$ and P(Q) such that the labels are preserved

Equilibria via Labeled Polytope

consider
$$\Gamma$$
, $A = \begin{pmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 2 \\ 2 & 6 \\ 3 & 1 \end{pmatrix}$

the polyhedra \overline{P} , \overline{Q} are defined as follows:

$$\overline{P} = \begin{cases} x_1 \ge 0 & (1) \\ x_2 \ge 0 & (2) \\ (x_1, x_2, x_3, v) \mid \begin{array}{c} x_3 \ge 0 & (3) \\ 3x_1 + 2x_2 + 3x_3 \leqslant v & (4) \\ 2x_1 + 6x_2 + 1x_3 \leqslant v & (5) \\ x_1 + x_2 + x_3 = 1 \\ \end{cases}$$

$$\overline{Q} = \begin{cases} 3y_4 + 3y_5 \leqslant u & (1) \\ 3y_4 + 5y_5 \leqslant u & (2) \\ (y_4, y_5, u) \mid \begin{array}{c} 6y_5 \leqslant u & (3) \\ y_4 \ge 0 & (4) \\ y_5 \ge 0 & (5) \\ y_4 + y_5 = 1 \\ \end{cases}$$

Game Theory

GM (Institute of Computer Science @ UIBK 24/35 GM (Institute of Computer Science @ UIBK Example Example points of polytope *P*: consider for example Q: $\mathbf{0} = (0, 0, 0)$ labels 1, 2, 3 $Q = \left\{ \begin{pmatrix} 3\frac{y_4}{u} + 3\frac{y_5}{u} \leqslant 1 & (1) \\ 3\frac{y_4}{u} + 5\frac{y_5}{u} \leqslant 1 & (2) \\ (\frac{y_4}{u}, \frac{y_5}{u}) \mid \begin{array}{c} 3\frac{y_4}{u} + 5\frac{y_5}{u} \leqslant 1 & (2) \\ 6\frac{y_5}{u} \leqslant 1 & (3) \\ & \cdot \end{array} \right\}$ $a = (\frac{1}{3}, 0, 0)$ labels 2, 3, 4 $b = (\frac{2}{7}, \frac{1}{14}, 0)$ labels 3, 4, 5 $c = (0, \frac{1}{6}, 0)$ labels 1, 3, 5 Observation $d=(0,\frac{1}{8},\frac{1}{4})$ labels 1, 4, 5 • *P*, *Q* are bounded, hence polytopes $e = (0, 0, \frac{1}{3})$ • in this transformation labels are preserved labels 1, 2, 4 • every vertex in P(Q) has m(n) labels as the game is nondegenerated

		Equilibria via Labeled Polytopes
Example (cont'd) points of polytope Q: $p = (0, \frac{1}{6})$ $q = (\frac{1}{12}, \frac{1}{6})$ $r = (\frac{1}{6}, \frac{1}{9})$ $s = (\frac{1}{3}, 0)$	labels ③, ④ labels ②, ③ labels ①, ② labels ①, ⑤	Algorithm • INPUT: a nondegenerate bimatrix game • OUTPUT: all Nash equilibria Method • define polytopes P, Q • \forall vertex x of $P - \{0\}$ • \forall vertex y of $Q - \{0\}$ • if (x, y) is completely labeled, output the Nash equilibrium $(x \cdot \frac{1}{1^{\top}x}, y \cdot \frac{1}{1^{\top}y})$ Observation vertex enumeration is more efficient than support enumeration
M (Institute of Computer Science @ UIBK) Game Theo ash equilibria and NP-completeness	ry 28/35	GM (Institute of Computer Science @ UIBK) Game Theory 29/38 Nash equilibria and NP-completeness
Ash equilibria and NP-completeness Nash equilibria and NP-complex Definition a search problem S consists of 1 a set of inputs $I_S \subseteq \Sigma^*$	teness	Nash equilibria and NP-completeness
Nash equilibria and NP-completeness Nash equilibria and NP-comple Definition a search problem <i>S</i> consists of	teness for some integer <i>k</i>	Nash equilibria and NP-completeness NP-completeness of Generalisations Definition a bimatrix game Γ represented by payoff matrices A and B is symmetric if $A = B^{\top}$ Theorem the following problems are complete for NP (even for symmetric games):
Ash equilibria and NP-completeness Nash equilibria and NP-complex Definition a search problem S consists of a set of inputs $I_S \subseteq \Sigma^*$ $\forall x \in I_S \exists$ solution set $S_x \subseteq \Sigma^{ x ^k}$	teness for some integer k ecidable in polytime whether $y \in S_x$	Nash equilibria and NP-completeness NP-completeness of Generalisations Definition a bimatrix game Γ represented by payoff matrices A and B is symmetric if $A = B^{\top}$ Theorem the following problems are complete for NP (even for symmetric games): given a two-player game Γ in strategic form, does Γ have:
Ash equilibria and NP-completeness Nash equilibria and NP-completeness Definition a search problem S consists of a set of inputs $I_S \subseteq \Sigma^*$ $\forall x \in I_S \exists$ solution set $S_x \subseteq \Sigma^{ x ^k}$ \exists such that $\forall x \in I_S \forall y \in \Sigma^*$ it is d a search problem is total if $\forall x \in I_S S_x$ Definition we write NASH for the problem of findit	teness for some integer k ecidable in polytime whether $y \in S_x$ $\neq \varnothing$	 Nash equilibria and NP-completeness NP-completeness of Generalisations Definition a bimatrix game Γ represented by payoff matrices A and B is symmetric if A = B^T Theorem the following problems are complete for NP (even for symmetric games): given a two-player game Γ in strategic form, does Γ have: at least two Nash equilibria? a Nash equilibrium in which player <i>i</i> has utility at least a given amount?
Ash equilibria and NP-completeness Nash equilibria and NP-completeness Definition a search problem S consists of a set of inputs $I_S \subseteq \Sigma^*$ $\forall x \in I_S \exists$ solution set $S_x \subseteq \Sigma^{ x ^k}$ \exists such that $\forall x \in I_S \forall y \in \Sigma^*$ it is d a search problem is total if $\forall x \in I_S S_x$ Definition	teness for some integer k ecidable in polytime whether $y \in S_x$ $\neq \varnothing$	Nash equilibria and NP-completeness NP-completeness of Generalisations Definition a bimatrix game Γ represented by payoff matrices A and B is symmetric if $A = B^{\top}$ Theorem the following problems are complete for NP (even for symmetric games): given a two-player game Γ in strategic form, does Γ have: • at least two Nash equilibria? • a Nash equilibrium in which player i has utility at least a given

Game Theory

The Class	Polynomial	Parity Argumen	t (Directed Case)

the class PPAD can be defined as the class of total search problems, where totality follows from an argument like follows

- a directed graph G is defined on a finite but exponentially large set of vertexes
- each vertex has indegree and outdegree at most 1
- given a vertex x is is easy to check that
 - 1 $x \in G$
 - **2** find the adjacent vertexes of x
 - **3** identify the direction of the edge
- \exists a vertex with no incoming edges that is known (the standard source)
- all vertexes with no outgoing edges, or all sources other than the standard source are solutions

Game Theory

Example NASH ∈ PPAD

Succinct Representations of Games

Observation ①

- given an *n*-player game
- such that each player has the same number of (pure) strategies m
- then representing a game in strategic form needs *nmⁿ* numbers

Observation ⁽²⁾

this trivialises any complexity considerations:

- the support enumeration algorithm roughly needs $(2^m)^n$ many steps
- but this is a polynomial algorithm in *nmⁿ*, if *m* is fixed

GM (Institute of Computer Science @ UIBK

Graphical Games

GM (Institute of Computer Science @ UIBK

uccinct Representations of Games

Definition

a graphical game is a *n*-person game, with *n* large, but the utility of each player depends only on the strategies of few other players

- \exists directed graph $G = (\{1, \ldots, n\}, E)$
- such that $(i, j) \in E$ implies that the utility of player j depends on the strategy chosen by player *i*
- \forall mixed strategies x, y if $x_i = y_i$ and \forall $(i, j) \in E$: $x_i = y_i$, then $u_i(x) = u_i(y)$

Observation ③

given a graphical n-player game Γ such that

- indegree of the graph G at most d
- maximal *m* pure strategy per player

then Γ needs only nm^{d+1} numbers for its description

NASH is complete for PPAD

Definition

32/35

the problem BROUWER, a discrete version of Brouwer's fixpoint theorem: any continuous function f on (let's say) cube has a fixpoint

Theorem

NASH (even for two players) is complete for PPAD

Proof Sketch

- BROUWER is complete for PPAD
- reduction from BROUWER to a graphical game Γ with many players
- reduction from Γ to NASH

Final Remark

if P = NP, then also P = PPAD, but P = PPAD need not imply P = NP