Summary of Last Lecture

Algorithm

- input: a nondegenerate bimatrix game
- output: all Nash equilibria

Game Theory

Georg Moser

Institute of Computer Science @ UIBK
Winter 2009

Content

motivation, introduction to decision theory, decision theory
basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium
two-person zero-sum games, Bayesian equilibria, sequential equilibra of extensive-form games, subgame-perfect equilibra
(efficient) computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria

Equilibria via Labeled Polytopes

Definition

- an affine combination of points z_{1}, \ldots, z_{k} is of form

$$
\sum_{i=1}^{k} z_{i} \lambda_{i} \quad \lambda_{i} \in \mathbb{R} \quad \sum_{i=1}^{k} \lambda_{i}=1
$$

- it is called convex combination if $\lambda_{i} \geqslant 0$ for all i
- a set of points is convex if closed under forming convex combinations
- points are affinely independent if none is an affine combinations of others
- a convex set has dimension d if
it has $d+1$ (but not more) affinely independent points

Definition

- a polyhedron $P \in \mathbb{R}^{d}$ is a set

$$
\left\{z \in \mathbb{R}^{d} \mid C z \leqslant q\right\} \quad \text { for some matrix } C \text {, vector } q
$$

- P is full-dimensional if it has dimension d
(i.e., $d+1$ (but not more) affinely independent elements)
- P is a polytope if bounded
- the face of P is $\left\{z \in P \mid c^{\top} z=q_{0}\right\}$ for $c \in \mathbb{R}^{d}, q_{0} \in \mathbb{R}$

Example

the following objects are polytops

- pyramids, i.e, tetrahedrons
- Rubben's cube
- octahedron
- dices in rôle games, i.e., icosahedron

Definitionlet P denote a polyhedron

- a vertex of P is the unique element of a zero-dimensional face of P
- an edge is a one-dimensional face of P
- a facet of a d-dimensional P is a $d-1$-dimensional face

Definition

best response polyhedron
the best response polyhedron of a player is the set of that player's mixed strategies together with a bound of expected payoffs to the other player

Example

consider 「

$$
A=\left(\begin{array}{ll}
3 & 3 \\
2 & 5 \\
0 & 6
\end{array}\right) \quad B=\left(\begin{array}{ll}
3 & 2 \\
2 & 6 \\
3 & 1
\end{array}\right)
$$

then

$$
\bar{Q}=\left\{\left(y_{4}, y_{5}, u\right) \left\lvert\, \begin{array}{l}
3 y_{4}+3 y_{5} \leqslant u, 3 y_{4}+5 y_{5} \leqslant u, 6 y_{5} \leqslant u \\
y_{4} \geqslant 0, y_{5} \geqslant 0, y_{4}+y_{5}=1
\end{array}\right.\right\}
$$

Definition

best response polyhedra for player 1 and 2

$$
\begin{aligned}
& \bar{P}=\left\{(x, v) \in \mathbb{R}^{m} \times \mathbb{R} \mid x \geqslant \mathbf{0}, \mathbf{1}^{\top} x=1, B^{\top} x \leqslant \mathbf{1} v\right\} \\
& \bar{Q}=\left\{(y, u) \in \mathbb{R}^{n} \times \mathbb{R} \mid A y \leqslant \mathbf{1} u, y \geqslant \mathbf{0}, \mathbf{1}^{\top} y=1\right\}
\end{aligned}
$$

Definition

a point $(y, u) \in \bar{Q}$ has label $k \in M \cup N$ if

- the $k^{\text {th }}$ inequality in the definition of \bar{Q} is binding
- i.e., $\sum_{j \in N} a_{k j} y_{j}=u$ if $k=i \in M$ or
- for $k=j \in N, y_{j}=0$

Example

the point $\left(\frac{2}{3}, \frac{1}{3}, 3\right)$ has labels 1 and 2 , as x_{1}, x_{2} are best responses to y for player 1 that yields pay-off 3

Definition

a point $(x, v) \in \bar{P}$ has label $k \in M \cup N$ if

- $k=i \in M$ and $x_{i}=0$ or
- $k=j \in N$ and $\sum_{i \in M} b_{i k} x_{i}=v$

Lemma

an equilibrium (x, y) is a pair such that

- pair $((x, v),(y, u)) \in \bar{P} \times \bar{Q}$
- this pair is completely labeled, i,e.
every label $k \in M \cup N$ labels either (x, v) or (y, u)

Proof

again this is a reformulation of the best response condition

Assumptions

suppose A and B^{\top} are non-negative and have no zero columns

Definition

consider \bar{P} :

- we divide each $\sum_{i \in M} b_{i j} x_{i} \leqslant v$ by v
- this gives $\sum_{i \in M} b_{i j}\left(\frac{x_{i}}{v}\right) \leqslant 1$
- we treat $\frac{x_{i}}{v}$ as a new variable (again called x_{i})

Definition

the normalised polytopes have the following generic form:

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{m} \mid x \geqslant \mathbf{0}, B^{\top} x \leqslant \mathbf{1}\right\} \\
& Q=\left\{y \in \mathbb{R}^{n} \mid A y \leqslant \mathbf{1}, y \geqslant \mathbf{0}\right\}
\end{aligned}
$$

Lemma

the polyhedra P and Q are full-dimensional polytopes, moreover there is a one-to-one correspondence between $\bar{P}(\bar{Q})$ and $P(Q)$ such that the labels are preserved
consider $\Gamma, A=\left(\begin{array}{ll}3 & 3 \\ 2 & 5 \\ 0 & 6\end{array}\right)$ and $B=\left(\begin{array}{ll}3 & 2 \\ 2 & 6 \\ 3 & 1\end{array}\right)$
the polyhedra \bar{P}, \bar{Q} are defined as follows:

$$
\begin{gathered}
\bar{P}=\left\{\begin{array}{c}
x_{1} \geqslant 0 \\
x_{2} \geqslant 0 \\
x_{3} \geqslant 0 \\
3 x_{1}+2 x_{2}+3 x_{3} \leqslant v \\
2 x_{1}+6 x_{2}+1 x_{3} \leqslant v \\
x_{1}+x_{2}+x_{3}=1
\end{array}\right. \\
\bar{Q}= \begin{cases}3 y_{4}+3 y_{5} \leqslant u & \text { (1) } \\
3 y_{4}+5 y_{5} \leqslant u & \text { (2) } \\
6 y_{5} \leqslant u & \text { (3) } \\
y_{4} \geqslant 0 & \left(y_{4}, y_{5}, u\right) \mid \\
y_{5} \geqslant 0 \\
y_{4}+y_{5}=1\end{cases}
\end{gathered}
$$

Example

consider for example Q :

$$
Q=\left\{\begin{array}{lll}
& \left.\begin{array}{l}
\frac{y_{4}}{u}+3 \frac{y_{5}}{u} \leqslant 1 \\
u
\end{array}, \frac{y_{5}}{u}\right) \mid & \frac{3}{u} u \\
u & \frac{y_{5}}{u} \\
& \frac{y_{5}}{u} & \text { (2) } \\
\vdots & \text { (3) }
\end{array}\right\}
$$

Observation

- P, Q are bounded, hence polytopes
- in this transformation labels are preserved
- every vertex in $P(Q)$ has $m(n)$ labels as the game is nondegenerated

Example

points of polytope P :

$$
\begin{aligned}
0 & =(0,0,0) \\
a & =\left(\frac{1}{3}, 0,0\right) \\
b & =\left(\frac{2}{7}, \frac{1}{14}, 0\right) \\
c & =\left(0, \frac{1}{6}, 0\right) \\
d & =\left(0, \frac{1}{8}, \frac{1}{4}\right) \\
e & =\left(0,0, \frac{1}{3}\right)
\end{aligned}
$$

labels (1), (2), (3)
labels (2), (3), (4)
labels (3), (4), (5)
labels (1), (3), (5)
labels (1), (4), (5)
labels (1), (2), (4)

Example (cont'd)
points of polytope Q :

$$
\begin{aligned}
p & =\left(0, \frac{1}{6}\right) \\
q & =\left(\frac{1}{12}, \frac{1}{6}\right) \\
r & =\left(\frac{1}{6}, \frac{1}{9}\right) \\
s & =\left(\frac{1}{3}, 0\right)
\end{aligned}
$$

labels (3), (4)
labels (2), (3)
labels (1), (2)
labels (1), (5)

Algorithm

- input: a nondegenerate bimatrix game
- output: all Nash equilibria

Method

1 define polytopes P, Q
$2 \forall$ vertex x of $P-\{\mathbf{0}\}$
B \forall vertex y of $Q-\{\mathbf{0}\}$
4 if (x, y) is completely labeled, output the Nash equilibrium

$$
\left(x \cdot \frac{1}{\mathbf{1}^{\top} x}, y \cdot \frac{1}{\mathbf{1}^{\top} y}\right)
$$

Observation

vertex enumeration is more efficient than support enumeration

Nash equilibria and NP-completeness

Definition

a search problem S consists of
1 a set of inputs $I_{S} \subseteq \Sigma^{*}$
2. $\forall x \in I_{S} \exists$ solution set $S_{x} \subseteq \Sigma^{|x|^{k}}$ for some integer k

3 such that $\forall x \in I_{S} \forall y \in \Sigma^{*}$ it is decidable in polytime whether $y \in S_{x}$
a search problem is total if $\forall x \in I_{S} S_{x} \neq \varnothing$
Definition
we write NASH for the problem of finding a Nash equilibrium
in a game in strategic form
Example
NASH is a total search problem

NP-completeness of Generalisations

Definition

a bimatrix game Γ represented by payoff matrices A and B is symmetric if $A=B^{\top}$

Theorem
the following problems are complete for NP (even for symmetric games): given a two-player game Γ in strategic form, does Γ have:

- at least two Nash equilibria?
- a Nash equilibrium in which player i has utility at least a given amount?
- a Nash equilibrium with support of size greater than a given number?
- a Nash equilibrium whose support contains strategy s ?
- ...

The Class Polynomial Parity Argument (Directed Case)

the class PPAD can be defined as the class of total search problems, where totality follows from an argument like follows

- a directed graph G is defined on a finite but exponentially large set of vertexes
- each vertex has indegree and outdegree at most 1
- given a vertex x is is easy to check that
$\| x \in G$
2 find the adjacent vertexes of x
3 identify the direction of the edge
- \exists a vertex with no incoming edges that is known (the standard source)
- all vertexes with no outgoing edges, or all sources other than the standard source are solutions

Succinct Representations of Games

Observation (1)

- given an n-player game
- such that each player has the same number of (pure) strategies m
- then representing a game in strategic form needs $n m^{n}$ numbers

Observation (2)

this trivialises any complexity considerations:

- the support enumeration algorithm roughly needs $\left(2^{m}\right)^{n}$ many steps
- but this is a polynomial algorithm in $n m^{n}$, if m is fixed
\bullet -

Example

NASH \in PPAD

Graphical Games

Definition

a graphical game is a n-person game, with n large, but the utility of each player depends only on the strategies of few other players

- \exists directed graph $G=(\{1, \ldots, n\}, E)$
- such that $(i, j) \in E$ implies that the utility of player j depends on the strategy chosen by player i
- \forall mixed strategies x, y if $x_{j}=y_{j}$ and $\forall(i, j) \in E: x_{i}=y_{i}$, then $u_{j}(x)=u_{j}(y)$

Observation (3)

given a graphical n-player game Γ such that

- indegree of the graph G at most d
- maximal m pure strategy per player
then Γ needs only $n m^{d+1}$ numbers for its description

NASH is complete for PPAD

Definition

the problem BROUWER, a discrete version of Brouwer's fixpoint theorem: any continuous function f on (let's say) cube has a fixpoint

Theorem

NASH (even for two players) is complete for PPAD

Proof Sketch

- BROUWER is complete for PPAD
- reduction from BROUWER to a graphical game Γ with many players
- reduction from Γ to NASH

Final Remark

if $P=N P$, then also $P=P P A D$, but $P=P P A D$ need not imply $P=N P$

