

Game Theory

Georg Moser

Institute of Computer Science @ UIBK

Winter 2009

GM (Institute of Computer Science @ UIBK)

Game Theory

1/46

Homework

Problem

Consider a Bayesian game Γ_1 with incomplete information in which player 1 may be either type α or type β . Where player 2 thinks the probability of type α is .9 and the probability of type β is .1. Player 2 has no private information. The payoffs to the two players are shown in the tables below, where the left table asserts $t_1 = \alpha$ and the right $t_1 = \beta$.

Show the existence of a Bayesian equilibrium in which player 2 chooses x_2 .

 $\mathsf{GM} \ (\mathsf{Institute} \ \mathsf{of} \ \mathsf{Computer} \ \mathsf{Science} \ @ \ \mathsf{UIBK})$

Game Theory

37/46

Problems

Problem

Let Γ_2 be a two-person zero-sum game in strategic form. Show that the set

$$\{\sigma_1 \mid \sigma \text{ is an equilibrium of } \Gamma_2\}$$

is a convex subset of the set of randomised strategies for player 1.

Problem

Consider the following three player game Γ :

	C_2 and C_3					
	<i>X</i> ₃		J	<i>y</i> 3		
C_1	<i>x</i> ₂	<i>y</i> ₂	<i>x</i> ₂	<i>y</i> ₂		
<i>x</i> ₁	0,0,0	6, 5, 4	4, 6, 5	0,0,0		
y_1	5, 4, 6	0, 0, 0	0, 0, 0	0, 0, 0		

Find all equilibria of Γ .

Exam Preparation

GM (Institute of Computer Science @ UIBK)

Game Theory

39/46

Simulated Exam

Last Year's Exams

Question 1

1 Let $X \subseteq \mathbb{R}$ and X be finite with $x \in X$ a prize that amount to $\in x$. Consider the following definition of $f \succcurlyeq_T g$:

$$\min_{s \in T} \sum_{x \in X} x \cdot f(x|s) \geqslant \min_{s \in T} \sum_{x \in X} x \cdot g(x|s) .$$

- 1 Give an informal explanation of the relation $f \succcurlyeq_T g$.
- **2** Does this definition of \succeq_T violate any of the axioms on decision theory?
- 3 Give an example of a preference (perhaps different from above) such that at least one axiom is violated.

Question 2

Consider the following voting mechanism: Three committee members decide (vote) each secretly on an option α , β , γ . The the votes are counted. If any options gets two votes, then this option is the outcome. Otherwise player 1 (the chairperson) decides. The payoffs are as follows: If option α is voted, player 1 gets \in 8 and player 3 \in 4, for option β player 1 gets \leq 4 and player 2 gets \leq 8, and for option γ , player 2 gets \leq 4 and player $3 \in 8$. If a player is not metioned in this list, she gets nothing.

- 1 Express the game in extensive form.
- 2 Transform the game to reduced strategic form.
- 3 Formalise the following assertion for games in extensive form as concrete as possible: Whenever a player moves, she remembers all the information she knew earlier.

GM (Institute of Computer Science @ UIBK) Game Theory

Question 3

Consider the following two games:

	P_2		
P_1	С	5	
\overline{C}	-100, -100	1,0	
S	0, 1	0, 0	

	Q_2		
Q_1	M	F	
Rr	0,0	1, -1	
Rp	0.5, -0.5	0,0	
Pr	-0.5, 0.5	1, -1	
Pр	0,0	0,0	

- **1** Compute all Nash equilibria of the game Γ_1 to the left.
- **2** Find all strongly dominated strategies of the game Γ_2 to the right. And define the fully reduced normal representation of Γ_2 .
- **3** Compute all Nash equilibria of Γ_2 .

Simulated Exam				
Question 4				
Define the Lemke-Howson algorithm including all necessary assumptions for its invocation.				
2 Define the complexity class PPAD and indicate the connection to the LH algorithm.				
will replaced by question about Bayesian Nash equilibrium/auctions,				
GM (Institute of Computer Science @ UIBK) Game Theory	43/46			
Simulated Exam	-1			
Determine whether the statements on the	answer sheet are true or false.			
statement	yes no			
To assert a player is intelligent, means smart as the observer.	s the player is as			
A randomised strategy σ is a best respective egy τ if at least one strategy in the size is a best responses to τ .				
The fully reduced normal representa	ation is derived			
from the normal representation by strategies thar are (randomly) redunce mal representation.	•			

Simulated Exam		
statement	yes	no
Given a finite game Γ in extensive form, there exists at least one pure equilibrium.		
Baysian Nash equilibria differs slightly from Nash equilibria, in particular Baysian Nash equilibria need not be best responses.		
A polyhedron is a polytope that is bounded.		
If $NP = P$, then also $PPAD = P$.		
GM (Institute of Computer Science @ UIBK) Game Theory		45/46
Two Last Questions		
Question open or closed exam?		
Question exam next week?		