

is a convex subset of the set of randomised strategies for player 1.

Problem

Consider the following three player game Γ :

	C_2 and C_3					
		<i>x</i> 3	J	<i>y</i> 3		
C_1	<i>x</i> ₂	<i>y</i> ₂	<i>x</i> ₂	<i>y</i> ₂		
x_1	0, 0, 0	6, 5, 4	4, 6, 5	0,0,0		
<i>y</i> 1	5, 4, 6	0, 0, 0	0, 0, 0	0, 0, 0		

Find all equilibria of Γ.

type α is .9 and the probability of type β is .1. Player 2 has no private information. The payoffs to the two players are shown in the tables below,

Show the existence of a Bayesian equilibrium in which player 2 chooses x_2 .

where the left table asserts $t_1 = \alpha$ and the right $t_1 = \beta$.

Last Year's ExamsQuestion 1Image: Let $X \subseteq \mathbb{R}$ and X be the consider the following $min_{s \in T} \sum_{x \in$	Problems		Simulated Exam
2 Does this definition3 Give an example of		Preparation	Last Year's Exams Question 1 Let $X \subseteq \mathbb{R}$ and X be a Consider the following
GM (Institute of Computer Science @ UIBK) Game Theory 39/46 GM (Institute of Computer Science @ UIBK)	GM (Institute of Computer Science @ UIBK)	Came Theory 3	2 Does this definition3 Give an example of that at least one ax

1 Let $X \subseteq \mathbb{R}$ and X be finite with $x \in X$ a prize that amount to $\in x$. Consider the following definition of $f \succ_T g$:

$$\min_{s\in\mathcal{T}}\sum_{x\in X}x\cdot f(x|s) \ge \min_{s\in\mathcal{T}}\sum_{x\in X}x\cdot g(x|s).$$

Give an informal explanation of the relation f ≽_T g.
Does this definition of ≽_T violate any of the axioms on decision theory?
Give an example of a preference (perhaps different from above) such that at least one axiom is violated.

\sim	1.	0
Q	uestion	2

Consider the following voting mechanism: Three committee members decide (vote) each secretly on an option α , β , γ . The the votes are counted. If any options gets two votes, then this option is the outcome. Otherwise player 1 (the chairperson) decides. The payoffs are as follows: If option α is voted, player 1 gets \in 8 and player 3 \in 4, for option β player 1 gets \in 4 and player 2 gets \in 8, and for option γ , player 2 gets \in 4 and player 3 \in 8. If a player is not metioned in this list, she gets nothing.

- **1** Express the game in extensive form.
- 2 Transform the game to reduced strategic form.
- **3** Formalise the following assertion for games in extensive form as concrete as possible: Whenever a player moves, she remembers all the information she knew earlier..

Question 3

Consider the following two games:

	P_2			Q_2	2
P_1	С	S	Q_1	М	F
С	-100, -100	1,0	Rr	0,0	1, -1
S	0,1	0,0	Rр	0.5, -0.5	0,0
			Pr	-0.5, 0.5	1,-1
			Pр	0,0	0,0

Game Theory

- **1** Compute all Nash equilibria of the game Γ_1 to the left.
- 2 Find all strongly dominated strategies of the game Γ_2 to the right. And define the fully reduced normal representation of Γ_2 .

Game Theory

3 Compute all Nash equilibria of Γ_2 .

Simulated Exam	Simulated Exam
	Determine whether the statements on the answer sheet are true or false.
	statement yes no
Question 4 I Define the Lemke-Howson algorithm including all necessary	To assert a player is intelligent, means the player is as
 assumptions for its invocation. 2 Define the complexity class PPAD and indicate the connection to the LH algorithm. 	A randomised strategy σ is a best response to a strat- egy τ if at least one strategy in the support set of σ is a best responses to τ .
will replaced by question about Bayesian Nash equilibrium/auctions,	The fully reduced normal representation is derived from the normal representation by eliminating all strategies thar are (randomly) redundant in the normal representation.
	A strategy for player <i>i</i> in the Bayesian game is a func- tion from the types of player <i>i</i> into the set of actions (of player <i>i</i>).
GM (Institute of Computer Science @ UIBK) Game Theory 43/46 Simulated Exam	GM (Institute of Computer Science @ UIBK) Game Theory 44/46 Simulated Exam
statement yes no	Two Last Questions
Given a finite game Γ in extensive form, there exists	Question open or closed exam?
Baysian Nash equilibria differs slightly from Nash equilibria, in particular Baysian Nash equilibria need not be best responses.	Question
A polyhedron is a polytope that is bounded.	exam next week?
If $NP = P$, then also $PPAD = P$.	
GM (Institute of Computer Science @ UIBK) Game Theory 45/46	GM (Institute of Computer Science @ UIBK) Game Theory 46/46