Cmputational
 gic

Game Theory

Homework

Georg Moser

Institute of Computer Science @ UIBK
Winter 2009

Problem

Consider a Bayesian game Γ_{1} with incomplete information in which player 1 may be either type α or type β. Where player 2 thinks the probability of type α is .9 and the probability of type β is .1 . Player 2 has no private information. The payoffs to the two players are shown in the tables below, where the left table asserts $t_{1}=\alpha$ and the right $t_{1}=\beta$.
$\left.\begin{array}{cccccc} & x_{2} & y_{2} & & x_{2} & y_{2} \\ x_{1} & 2,2 & -2,0 & x_{1} & 0,2 & 1,0 \\ y_{1} & 0,-2 & 0,0 & & y_{1} & 1,-2\end{array}\right) 2,0$

Show the existence of a Bayesian equilibrium in which player 2 chooses x_{2}.

Problem

Let Γ_{2} be a two-person zero-sum game in strategic form. Show that the set

$$
\left\{\sigma_{1} \mid \sigma \text { is an equilibrium of } \Gamma_{2}\right\}
$$

is a convex subset of the set of randomised strategies for player 1 .

Problem

Consider the following three player game Γ :

Find all equilibria of Γ.

Last Year's Exams

Exam Preparation

Question 2

Consider the following voting mechanism: Three committee members decide (vote) each secretly on an option α, β, γ. The the votes are counted. If any options gets two votes, then this option is the outcome.
Otherwise player 1 (the chairperson) decides. The payoffs are as follows: If option α is voted, player 1 gets $€ 8$ and player $3 € 4$, for option β player 1 gets $€ 4$ and player 2 gets $€ 8$, and for option γ, player 2 gets $€ 4$ and player $3 € 8$. If a player is not metioned in this list, she gets nothing.

1 Express the game in extensive form.
2 Transform the game to reduced strategic form.
3 Formalise the following assertion for games in extensive form as concrete as possible: Whenever a player moves, she remembers all the information she knew earlier..

Question 3

Consider the following two games:

	Q_{2}	
Q_{1}	M	F
$R r$	0,0	$1,-1$
$R p$	$0.5,-0.5$	0,0
$P r$	$-0.5,0.5$	$1,-1$
$P p$	0,0	0,0

1 Compute all Nash equilibria of the game Γ_{1} to the left.
2 Find all strongly dominated strategies of the game Γ_{2} to the right.
And define the fully reduced normal representation of Γ_{2}.
3 Compute all Nash equilibria of Γ_{2}.

Question 4

1 Define the Lemke-Howson algorithm including all necessary assumptions for its invocation.
2 Define the complexity class PPAD and indicate the connection to the LH algorithm.
will replaced by question about Bayesian Nash equilibrium/auctions, ...
GM (Institute of Computer Science © UIBK)
C

Two Last Questions

Given a finite game「 in extensive form, there exists at least one pure equilibrium.

Baysian Nash equilibria differs slightly from Nash equlibria, in particular Baysian Nash equilibria need not be best responses.

A polyhedron is a polytope that is bounded.

Question
open or closed exam?

Question
exam next week?

If $N P=P$, then also $P P A D=P$.

