Game Theory

Georg Moser

Institute of Computer Science @ UIBK

Winter 2009

Summary of Last Lecture

Assumption

- decision makers/players act rational and intelligent

Definition

- a lottery f maps Ω to the probability distributions $\Delta(X)$

$$
\sum_{x \in X} f(x \mid t)=1 \quad t \in \Omega
$$

- the set of lotteries is defined as follows:

$$
L=\{f \mid f: \Omega \rightarrow \Delta(X)\}
$$

- let t be a state, $f(\cdot \mid t)$ denotes the probability distribution over X in t :

$$
f(\mid t)=(f(x \mid t))_{x \in X} \in \Delta(X)
$$

- the lottery $[x]$ always get prize $x \in X$ for sure:

$$
[x](y \mid t)= \begin{cases}1 & \text { if } y=x \\ 0 & \text { if } y \neq x\end{cases}
$$

Axiomatic Presentation (1)

Axiom (totality)

- $f \succcurlyeq s g$ or $g \succcurlyeq s f$
- if $f \succcurlyeq s g$ and $g \succcurlyeq s h$, then $f \succcurlyeq s h$

Axiom (relevance)
$\forall t \in S: f(\cdot \mid t)=g(\cdot \mid t)$, then $f \sim_{s} g$
Axiom (monotonicity)
if $f \succ_{s} h$ and $\alpha>\beta$, then $\alpha f+(1-\alpha) h \succ_{s} \beta f+(1-\beta) h$
Axiom (continuity)
if $f \succcurlyeq s g$ and $g \succcurlyeq s h$, then $\exists \gamma g \sim_{s} \gamma f+(1-\gamma) h$
Axiom (interest)
$\forall t \in \Omega, \exists x, y \in X[y] \succ_{\{t\}}[x]$

Axiomatic Presentation (2)
Axiom (objective substitution)
if $e \succcurlyeq s f$ and $g \succcurlyeq s h$, then
$\alpha e+(1-\alpha) g \succcurlyeq s \alpha f+(1-\alpha) h$
Axiom (strict objective substitution)
if $e \succ_{s} f$ and $g \succcurlyeq s h$, then
$\alpha e+(1-\alpha) g \succ_{s} \alpha f+(1-\alpha) h$
Axiom (subjective substitution)
if $f \succcurlyeq S g$ and $f \succcurlyeq_{T} g$ and $S \cap T=\varnothing$, then $f \succcurlyeq S \cup T g$
Axiom (strict subjective substitution)
if $f \succ_{S} g$ and $f \succ_{T} g$ and $S \cap T=\varnothing$, then $f \succ_{S \cup T} g$
Axiom (state neutrality)
optional
$\forall r, t \in \Omega, f(\cdot \mid r)=f(\cdot \mid t), g(\cdot \mid r)=g(\cdot \mid t)$, then $\left(f \succcurlyeq_{\{r\}} g\right) \rightarrow\left(f \succcurlyeq_{\{t\}} g\right)$

Expected Utility

recall: $\equiv=\{S \mid S \subseteq \Omega, S \neq \varnothing\}$ denotes the set of all events
Definition

- a conditional-probability function $p: \equiv \rightarrow \Delta(\Omega)$:

$$
p(t \mid S)=0 \quad \text { if } t \notin S \quad \sum_{r \in S} p(r \mid S)=1
$$

- $p(R \mid S)=\sum_{t \in R} p(t \mid S)$
- a utility function is any function from $u: X \times \Omega \rightarrow \mathbb{R}$
- a utility function u is state independent if $\exists U: X \rightarrow \mathbb{R}$ such that $u(x, t)=U(x)$ for all $x \in X, t \in \Omega$

Definition
let p denote a conditional-probability function and u any utility function, then the expected utility determined by lottery f is defined as:

$$
E_{p}(u(f) \mid S)=\sum_{t \in S} p(t \mid S) \sum_{x \in X} u(x, t) f(x \mid t)
$$

Content

motivation, introduction to decision theory, decision theory
basic model of game theory, dominated strategies, Bayesian games, Nash equilibrium
two-person zero-sum games, Bayesian equilibrium, sequential equilibria of extensive-form games, computing Nash equilibria, sub-game-perfect equilibria
efficient computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Expected Utility Maximisation Theorem

Theorem

the axioms (with state neutrality) are satisfied if and only if there exists a (state-independent) utility function u and a conditional-probability function p such that
$1 \max _{x \in X} u(x, t)=1$ and $\min _{x \in X} u(x, t)=0$
$2 p(R \mid T)=p(R \mid S) p(S \mid T) \forall R, S, T$ so that $R \subseteq S \subseteq T$ and $S \neq \varnothing$
$3 f \succcurlyeq s g$ if and only if $E_{p}(u(f) \mid S) \geqslant E_{p}(u(g) \mid S)$

Proof of the Theorem (1)

Special Lotteries

- define a_{1} for all $t \in \Omega$:

$$
a_{1}(y \mid t)=1 \text { such that } \forall x \in X,[y] \succcurlyeq_{\{t\}}[x]
$$

- define a_{0} for all $t \in \Omega$:

$$
a_{0}(y \mid t)=1 \text { such that } \forall x \in X,[x] \succcurlyeq\{t\}[y]
$$

More Special Lotteries
for every event $S \in$ 三

$$
b_{S}(\cdot \mid t)= \begin{cases}a_{1}(\cdot \mid t) & \text { if } t \in S \\ a_{0}(\cdot \mid t) & \text { if } t \notin S\end{cases}
$$

for every event $x \in X, t \in \Omega$:

$$
\begin{array}{ll}
t \in \Omega: \\
c_{x, t}(\cdot \mid r)
\end{array}= \begin{cases}{[x]} & \text { if } r=t \\
a_{0}(\cdot \mid r) & \text { if } r \neq t\end{cases}
$$

Proof of the Theorem (2)

Definition $u(x, t)$

- ask: what is the correct number β such that

$$
[x] \sim_{\{t\}} \beta a_{1}+(1-\beta) a_{0}
$$

- set $u(x, t)=\beta$

Definition $p(t \mid S)$

- ask: what is the correct number γ such that

$$
b_{\{t\}} \sim s \gamma a_{1}+(1-\gamma) a_{0}
$$

- set $p(t \mid S)=\gamma$

Proof Plan

show that $u(x, t)$ and $p(t \mid S)$ fulfil the 3rd condition:

$$
f \succcurlyeq s g \Leftrightarrow E_{p}(u(f) \mid S) \geqslant E_{p}(u(g) \mid S)
$$

Proof of the Theorem (3)
Claim $\forall r \in \Omega: c_{x, t} \sim_{\{r\}} u(x, t) b_{\{t\}}+(1-u(x, t)) a_{0}$
Proof on blackboard

Claim $\forall S \in$ 三: $c_{x, t} \sim_{s} u(x, t) b_{\{t\}}+(1-u(x, t)) a_{0}$
Proof
from Claim 1 with Subjective Substitution
Claim

$$
f \succcurlyeq s g \Leftrightarrow \frac{1}{n} f+\left(1-\frac{1}{n}\right) a_{0} \succcurlyeq s \frac{1}{n} g+\left(1-\frac{1}{n}\right) a_{0}
$$

where $n=|\Omega|$
Proof
with Objective Substitution

Proof of the Theorem (4)

Claim

$$
\frac{1}{n} f+\left(1-\frac{1}{n}\right) a_{0}=\frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x \mid t) c_{x, t}
$$

Proof
on blackboard
using the definitions of $u(x, t), p(t \mid S)$ we have

$$
\begin{aligned}
& \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x \mid t) c_{x, t} \\
& \quad \sim_{S} \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x \mid t)\left(u(x, t) b_{\{t\}}+(1-u(x, t)) a_{0}\right) \\
& \quad \sim S \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x \mid t)\left(u(x, t)\left[p(t \mid S) a_{1}+(1-p(t \mid S)) a_{0}\right]+\right. \\
& \left.\quad+(1-u(x, t)) a_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sim_{S} & \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x \mid t)\left(u(x, t)\left[p(t \mid S) a_{1}+(1-p(t \mid S)) a_{0}\right]+\right. \\
& \left.+(1-u(x, t)) a_{0}\right)= \\
= & \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x \mid t) u(x, t) p(t \mid S) a_{1} \\
& +\left(1-\frac{1}{n}\left(\sum_{t \in \Omega} \sum_{x \in X} f(x \mid t) u(x, t) p(t \mid S)\right)\right) a_{0}= \\
= & \left(\frac{E_{p}(u(f) \mid S)}{n}\right) a_{1}+\left(1-\frac{E_{p}(u(f) \mid S)}{n}\right) a_{0}
\end{aligned}
$$

in a similar spirit, we have

$$
\frac{1}{n} g+\left(1-\frac{1}{n}\right) a_{0} \sim_{S}\left(\frac{E_{p}(u(g) \mid S)}{n}\right) a_{1}+\left(1-\frac{E_{p}(u(g) \mid S)}{n}\right) a_{0}
$$

Proof of the Theorem (5)

Claim

$$
\begin{aligned}
& f \succcurlyeq s g \Leftrightarrow \\
& \left(\frac{E_{p}(u(f) \mid S)}{n}\right) a_{1}+\left(1-\frac{E_{p}(u(f) \mid S)}{n}\right) a_{0} \succcurlyeq s \\
& \quad \succcurlyeq s\left(\frac{E_{p}(u(g) \mid S)}{n}\right) a_{1}+\left(1-\frac{E_{p}(u(g) \mid S)}{n}\right) a_{0}
\end{aligned}
$$

Proof

by Transitivity
we conclude

$$
f \succcurlyeq s g \Leftrightarrow E_{p}(u(f) \mid S) \geqslant E_{p}(u(g) \mid S)
$$

Proof (that 3rd property in theorem follows from axioms)
we use

- Interest and Strict Substitution to conclude $a_{1} \succ s a_{0}$ and
- Monotonicity

Violations of Strict Objective Substitution

Example consider four lotteries

$$
\begin{array}{lll}
f_{1}=0.1 \cdot[€ 12 \mathrm{~m}]+0.9 \cdot[€ 0] & f_{2} & =0.11 \cdot[€ 1 \mathrm{~m}]+0.89 \cdot[€ 0] \\
f_{3}=[€ 1 \mathrm{~m}] & & f_{4}
\end{array}=0.10 \cdot[€ 12 \mathrm{~m}]+0.89 \cdot[€ 1 \mathrm{~m}]+\mathrm{t}
$$

Preferences

$$
f_{1} \succ f_{2} \quad f_{3} \succ f_{4}
$$

Observation
this violates the axiom, as

$$
0.5 \cdot f_{1}+0.5 \cdot f_{3}=0.5 \cdot f_{2}+0.5 \cdot f_{4}
$$

Example
let $X=\{-€ 100, € 100\}, \Omega=\{\mathrm{L}, \mathrm{W}\}$

$$
\begin{aligned}
b_{\mathrm{L}}(€ 100 \mid \mathrm{L}) & =1=b_{\mathrm{L}}(-€ 100 \mid \mathrm{W}) \\
b_{\mathrm{W}}(-€ 100 \mid \mathrm{L}) & =1=b_{\mathrm{W}}(€ 100 \mid \mathrm{W})
\end{aligned}
$$

- L is the event where SC Austria Lustenau wins the ADEG-cup
- W is the event where Wacker Innsbruck wins
- suppose only L or W can occur

Preferences

(if someone doesn't know anything about Wacker or Lustenau)
$0.5 \cdot[€ 100]+0.5 \cdot[-€ 100] \succ b_{\mathrm{L}} \quad 0.5 \cdot[€ 100]+0.5 \cdot[-€ 100] \succ b_{\mathrm{W}}$

Observation
this violates the axiom
at least one state in Ω must have probability greater or equal than $\frac{1}{2}$

Cannot be Modelled

Example

situation A

- you buy a ticket to the movies in advance (for $€ 10$)
- on the counter you realise you've lost your ticket
- you have $€ 10$, do you buy a new ticket or go home?
situation B
- you plan to see a movie and put $€ 10$ in your pocket
- on the counter you realise you've lost your money
- do you buy a ticket with your credit card or go home?

Question
what is your preference?
$A+$ go home ? $B+$ buy ticket

Answer

no (strict) preference between A and B is modelled by the axiom:
there is no difference

