

Axiom (state neutrality)optional $\forall r, t \in \Omega, f(\cdot|r) = f(\cdot|t), g(\cdot|r) = g(\cdot|t), \text{ then } (f \succcurlyeq_{\{r\}} g) \rightarrow (f \succcurlyeq_{\{t\}} g)$

Game Theory

 $\forall t \in \Omega, \exists x, y \in X [y] \succ_{\{t\}} [x]$

Expected Utility recall: $\Xi = \{S \mid S \subseteq \Omega, S \neq \emptyset\}$ denotes the set of all events	Content			
Definition • a conditional-probability function $p: \Xi \to \Delta(\Omega)$:	motivation, introduction to decision theory, decision theory			
$p(t S) = 0 \text{if } t \notin S \qquad \sum_{r \in S} p(r S) = 1$ • $p(R S) = \sum_{t \in R} p(t S)$ • a utility function is any function from $u: X \times \Omega \to \mathbb{R}$ • a utility function u is state independent if $\exists U: X \to \mathbb{R}$ such that $u(x, t) = U(x)$ for all $x \in X, t \in \Omega$	basic model of game theory, dominated strategies, Bayesian games, Nash equilibrium two-person zero-sum games, Bayesian equilibrium, sequential equilibria of extensive-form games, computing Nash equilibria, sub-game-perfect equilibria			
Definition let p denote a conditional-probability function and u any utility function, then the expected utility determined by lottery f is defined as: $E_p(u(f) S) = \sum p(t S) \sum u(x,t)f(x t)$	efficient computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games			
$t \in S \qquad x \in X$ GM (Institute of Computer Science @ IJIBK) Game Theory 24/41	CM (Institute of Computer Science @ LIDK) Come Theory 25/41			
	ASIVE FOR THE OF A DEDUCE WEITER A THEAT AND A THEAT A			
Content	Content 23/41			
Expected Utility Maximisation Theorem	Content Proof of the Theorem ①			
Context Expected Utility Maximisation Theorem Theorem the axioms (with state neutrality) are satisfied if and only if there exists a (state-independent) utility function u and a conditional-probability function p such that $max_{x \in X} u(x, t) = 1$ and $min_{x \in X} u(x, t) = 0$ $p(R T) = p(R S)p(S T) \forall R, S, T$ so that $R \subseteq S \subseteq T$ and $S \neq \emptyset$ $f \succcurlyeq_S g$ if and only if $E_p(u(f) S) \ge E_p(u(g) S)$	Content Proof of the Theorem ① Special Lotteries • define a_1 for all $t \in \Omega$: $a_1(y t) = 1$ such that $\forall x \in X$, $[y] \succcurlyeq_{\{t\}} [x]$ • define a_0 for all $t \in \Omega$: $a_0(y t) = 1$ such that $\forall x \in X$, $[x] \succcurlyeq_{\{t\}} [y]$ More Special Lotteries for every event $S \in \Xi$ $b_S(\cdot t) = \begin{cases} a_1(\cdot t) & \text{if } t \in S \\ a_0(\cdot t) & \text{if } t \notin S \end{cases}$ for every event $x \in X$, $t \in \Omega$: $f(x t) = \frac{f(x t)}{1} = \frac{f(x t)}{1}$			

Content

Game Theory

۲

Proof of the Theorem 2

Definition u(x, t)• ask: what is the correct number β such that $[x] \sim_{\{t\}} \beta a_1 + (1 - \beta)a_0$

set
$$u(x,t) = \beta$$

Definition p(t|S)

• ask: what is the correct number γ such that

 $b_{\{t\}}\sim_{\mathcal{S}}\gamma a_1+(1-\gamma)a_0$

• set $p(t|S) = \gamma$

Proof Plan

show that u(x, t) and p(t|S) fulfil the 3rd condition: $f \succeq_S g \Leftrightarrow E_p(u(f)|S) \ge E_p(u(g)|S)$

ntent

Proof of the Theorem ③

Claim $\forall r \in \Omega$: $c_{x,t} \sim_{\{r\}} u(x,t)b_{\{t\}} + (1 - u(x,t))a_0$

Proof

on blackboard

Claim $\forall S \in \Xi$: $c_{x,t} \sim_S u(x,t)b_{\{t\}} + (1 - u(x,t))a_0$

Proof

from Claim 1 with Subjective Substitution

Claim

28/41

$$f \succcurlyeq_S g \Leftrightarrow \frac{1}{n}f + (1 - \frac{1}{n})a_0 \succcurlyeq_S \frac{1}{n}g + (1 - \frac{1}{n})a_0$$

Game Theory

where $n = |\Omega|$

Proof with Objective Substitution

GM (Institute of Computer Science @ UIBK)

GM (Institute of Computer Science @ UIBK)

Proof of the Theorem ④

Claim

$$\frac{1}{n}f + (1 - \frac{1}{n})a_0 = \frac{1}{n}\sum_{t\in\Omega}\sum_{x\in X}f(x|t)c_{x,t}$$

Game Theory

Proof

on blackboard

using the definitions of u(x, t), p(t|S) we have

$$\frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x|t) c_{x,t}$$

$$\sim_{S} \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x|t) \left(u(x,t) b_{\{t\}} + (1 - u(x,t)) a_{0} \right)$$

$$\sim_{S} \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x|t) \left(u(x,t) \left[p(t|S) a_{1} + (1 - p(t|S)) a_{0} \right] + (1 - u(x,t)) a_{0} \right)$$

$$\sim_{S} rac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x|t) (u(x,t) [p(t|S)a_{1} + (1 - p(t|S))a_{0}] + (1 - u(x,t))a_{0}) =$$

$$= \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x|t)u(x,t)p(t|S)a_1$$
$$+ \left(1 - \frac{1}{n} (\sum_{t \in \Omega} \sum_{x \in X} f(x|t)u(x,t)p(t|S))\right)a_0 =$$
$$\left(E_p(u(f)|S)\right) + \left(1 - E_p(u(f)|S)\right)$$

$$= \left(\frac{E_p(u(f)|S)}{n}\right)a_1 + \left(1 - \frac{E_p(u(f)|S)}{n}\right)a_0$$

in a similar spirit, we have

$$\frac{1}{n}g + (1-\frac{1}{n})a_0 \sim_S \left(\frac{E_p(u(g)|S)}{n}\right)a_1 + \left(1-\frac{E_p(u(g)|S)}{n}\right)a_0$$

Game Theory

GM (Institute of Computer Science @ UIBK)

Theory

31/41

20/4

-				
		۰.		
-	υ			

Proof of the Theorem (5)

Claim

$$f \succcurlyeq_{S} g \Leftrightarrow \left(\frac{E_{p}(u(f)|S)}{n}\right) a_{1} + \left(1 - \frac{E_{p}(u(f)|S)}{n}\right) a_{0} \succcurlyeq_{S} \\ \succcurlyeq_{S} \left(\frac{E_{p}(u(g)|S)}{n}\right) a_{1} + \left(1 - \frac{E_{p}(u(g)|S)}{n}\right) a_{0}$$

Proof

by Transitivity

we conclude

 $f \succeq_S g \Leftrightarrow E_p(u(f)|S) \ge E_p(u(g)|S)$

Proof (that 3rd property in theorem follows from axioms) we use

- Interest and Strict Substitution to conclude $a_1 \succ_S a_0$ and
- Monotonicity GM (Institute of Computer Science @ UIBK)

Example let *X* = {−€100, €100}, Ω = {L, W}

> $b_{\rm I}$ ($\leq 100 | {\rm L}$) = 1 = $b_{\rm I}$ ($- \leq 100 | {\rm W}$) $b_{W}(-\in 100|L) = 1 = b_{W}(\in 100|W)$

- L is the event where SC Austria Lustenau wins the ADEG-cup
- W is the event where Wacker Innsbruck wins
- suppose only L or W can occur

Preferences

(if someone doesn't know anything about Wacker or Lustenau)

 $0.5 \cdot [\in 100] + 0.5 \cdot [-\in 100] \succ b_{\rm I}$ $0.5 \cdot [\in 100] + 0.5 \cdot [-\in 100] \succ b_{\rm W}$

Observation

this violates the axiom

GM (Institute of Computer Science @ UIBK)

at least one state in Ω must have probability greater or equal than $\frac{1}{2}$

Violations of Strict Objective Substitution

Example consider four lotteries

$$\begin{array}{ll} 0.1 \cdot [\in 12m] + 0.9 \cdot [\in 0] & f_2 = 0.11 \cdot [\in 1m] + 0.89 \cdot [\in 0] \\ [\in 1m] & f_4 = 0.10 \cdot [\in 12m] + 0.89 \cdot [\in 1m] + \\ & +.01 \cdot [\in 0] \end{array}$$

Preferences

32/41

 $f_1 =$ $f_3 =$

 $f_1 \succ f_2$

 $f_3 \succ f_4$

Observation this violates the axiom, as

$$0.5 \cdot f_1 + 0.5 \cdot f_3 = 0.5 \cdot f_2 + 0.5 \cdot f_3$$

Game Theor

Cannot be Modelled

GM (Institute of Computer Science @ UIBK)

Example

situation A

- you buy a ticket to the movies in advance (for €10)
- on the counter you realise you've lost your ticket
- you have €10, do you buy a new ticket or go home?

situation B

- you plan to see a movie and put €10 in your pocket
- on the counter you realise you've lost your money
- do you buy a ticket with your credit card or go home?

Question

what is your preference?

A + go home ? B + buy ticket

Answer

no (strict) preference between A and B is modelled by the axiom: there is no difference Game Theory