

Game Theory

Georg Moser

Institute of Computer Science @ UIBK

Winter 2009

GM (Institute of Computer Science @ UIBK)

Game Theory

1/46

Homework

Problem

Let $X \subseteq \mathbb{R}$ and X be finite with $x \in X$ a prize that amount to $\in x$. Consider the following definition of $f \succcurlyeq_T g$:

$$\min_{s \in T} \sum_{x \in X} x \cdot f(x|s) \geqslant \min_{s \in T} \sum_{x \in X} x \cdot g(x|s) .$$

- 1 Give an informal explanation of the relation $f \succcurlyeq_T g$
- **2** Does this definition of $\succcurlyeq_{\mathcal{T}}$ violate any of the axioms on decision theory?
- 3 Give an example of a preference (perhaps different from above) such that at least one axiom is violated

GM (Institute of Computer Science @ UIBK)

Game Theory

37/46

Problem

Consider the following four axioms on preferences of decision makers for lotteries f, g, and h and event S:

- (i) $f \succcurlyeq_S g$ or $g \succcurlyeq_S f$
- (ii) if $e \succ_S f$ and $g \succcurlyeq_S h$, $\alpha \in (0,1]$ then $\alpha e + (1-\alpha)g \succ_S \alpha f + (1-\alpha)h$
- (iii) $f \succcurlyeq_S g$ and $g \succcurlyeq_S h$ implies $f \succcurlyeq_S h$
- (iv) if $f \succ_S h$ and $0 \le \beta < \alpha \le 1$, then $\alpha f + (1 \alpha)h \succ_S \beta f + (1 \beta)h$ Prove the following two properties.
 - 1 The axiom (iii) follows from the first two
 - **2** The axiom (iv) follows from the first two

Problem

consider the proof of the Expected Utility Maximisation Theorem; prove the following equality used:

$$\frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x|t) (u(x,t) [p(t|S)a_1 + (1-p(t|S))a_0] + (1-u(x,t))a_0) =
\frac{1}{n} = \sum_{t \in \Omega} \sum_{x \in X} f(x|t) u(x,t) p(t|S)a_1 +
+ \left(1 - \frac{1}{n} (\sum_{t \in \Omega} \sum_{x \in X} f(x|t) u(x,t) p(t|S))\right) a_0$$

Problem

consider the proof of the Expected Utility Maximisation Theorem. Prove the reveresed direction, i.e., given a utility function u, a conditional-probability function p fulfilling the assertions of the theorem, show that the thus defined relation \succeq_S fulfils all axioms

GM (Institute of Computer Science @ UIBK)

Game Theory

39/46

Problem

a decision-maker expresses the following preference order:

[€600]
$$\succ$$
 [€400] \succ .9[€600] $+$.1[€0]
 \succ .2[€600] $+$ 0.8[€0]
 \succ .25[€400] $+$.75[€0] \succ [€0]

Prove or disprove: These preferences are consistent with a state-independent utility of money

GM (Institute of Computer Science @ UIBK)

Game Theory