

Problem

Let $X \subseteq \mathbb{R}$ and X be finite with $x \in X$ a prize that amount to $\in x$. Consider the following definition of $f \succ_T g$:

$$\min_{s\in T}\sum_{x\in X}x\cdot f(x|s) \ge \min_{s\in T}\sum_{x\in X}x\cdot g(x|s).$$

- **1** Give an informal explanation of the relation $f \succeq_T g$
- 2 Does this definition of ≽_T violate any of the axioms on decision theory?
- **3** Give an example of a preference (perhaps different from above) such that at least one axiom is violated

Problem

Consider the following four axioms on preferences of decision makers for lotteries f, g, and h and event S:

- (i) $f \succeq_S g$ or $g \succeq_S f$
- (ii) if $e \succ_S f$ and $g \succcurlyeq_S h$, $\alpha \in (0, 1]$ then $\alpha e + (1 - \alpha)g \succ_S \alpha f + (1 - \alpha)h$
- (iii) $f \succcurlyeq_S g$ and $g \succcurlyeq_S h$ implies $f \succcurlyeq_S h$
- (iv) if $f \succ_S h$ and $0 \leq \beta < \alpha \leq 1$, then $\alpha f + (1 \alpha)h \succ_S \beta f + (1 \beta)h$

Prove the following two properties.

- 1 The axiom (iii) follows from the first two
- **2** The axiom (iv) follows from the first two

Problem

consider the proof of the Expected Utility Maximisation Theorem; prove the following equality used:

$$\begin{aligned} \frac{1}{n} \sum_{t \in \Omega} \sum_{x \in X} f(x|t) \big(u(x,t) \left[p(t|S)a_1 + (1-p(t|S))a_0 \right] + (1-u(x,t))a_0 \big) &= \\ \frac{1}{n} = \sum_{t \in \Omega} \sum_{x \in X} f(x|t)u(x,t)p(t|S)a_1 + \\ &+ \left(1 - \frac{1}{n} (\sum_{t \in \Omega} \sum_{x \in X} f(x|t)u(x,t)p(t|S)) \right) a_0 \end{aligned}$$

Problem

GM (Institute of Computer Science @ UIBK)

consider the proof of the Expected Utility Maximisation Theorem. Prove the reversed direction, i.e., given a utility function u, a conditional-probability function p fulfilling the assertions of the theorem, show that the thus defined relation \geq_S fulfils all axioms

Game Theory

Problem

39/46 GM (Institute of Computer Science @ UIBK)

a decision-maker expresses the following preference order:

$$\begin{split} [{ \circlined 600 }] \succ [{ \circlined 600 }] \succ .9 [{ \circlined 600 }] + .1 [{ \circlined 600 }] \\ & \qquad \succ .2 [{ \circlined 600 }] + 0.8 [{ \circlined 600 }] \\ & \qquad \succ .25 [{ \circlined 600 }] + .75 [{ \circlined 600 }] \succ [{ \circlined 600 }] \end{split}$$

Game Theory

Prove or disprove: These preferences are consistent with a state-independent utility of money